H 4%

e 1.1
—~ RBHHA HTTP &4 1.2
1.1 S PERE 6y 0 B354 1.2.1
1.1.0 A48 1.2.1.1

1.1.1 HTTP i #3458 1.2.1.2

1.1.2 TCP f #3947 & 12.1.3

1.1.3 A B HHZ 1214

1.1.4 Bhl ik 1215

1.2 % 6k 09 215 H 2 4b 1.2.2
1.2.0 A4 1.2.2.1

1.2.1 48 Cookie 2| /R % % 1.2.2.2

1.3 % B4k K4z 1.2.3
1.3.0 A4 1.2.3.1

131 R BEEARE 1.2.3.2

1.3.3 TCP /R % & % 446 0] 1.2.3.3

1.3.4 HTTP MR % 2 % 42460 1.2.3.4

1.5 RIAE T4 45 % 4 i B 1.2.4
1.5.0 43 1.2.4.1

1.5.1 % # X ¥ H & (Caching Zones) 1.24.2

1.5.2 BB % Bob At s 1.2.4.3

153 Bt KL A A S 1.2.4.4

1.5.4 % 5 HE 48 1.2.4.5

1.9 UDP ft #39#F 1.2.5
1.9.0 /48 1.2.5.1

1.9.1 Stream 454 EF T 1.2.5.2

1.9.2 fi BB H* 1.2.5.3

1.9.3 UDP /R % % 4 B 4o | 1.2.5.4

=~ RFEEREH5 T FME 1.3
2.11 T 35 o] P 3 1 1.3.1
2.11.0 K4 1.3.1.1

2.11.1 AT IP 3&3ki7 7] e & 1.3.1.2

2.11.2 3533 R IRk F 424 1.3.1.3
2.12 5 17 IR 1.3.2
2.12.0 A4 1.3.2.1
2.12.1 IR&F & % 1.3.2.2
2.12.2 I%H] EAE T ik & 1.3.2.3
2.12.3 BRH %% 1.3.2.4
2.13 B B 1.3.3
2.13.0 4 1.3.3.1
2.13.1 & P 3 dm % 1.3.3.2
2.13.2 Upstream 12 3k jo % 1.3.3.3
2.20 % B BT 1.3.4
2.20.1 HTTPS £% %) 1.3.4.1
2.20.3 2 Fl HTTP = #%4% #r ho 58 o 6 1.3.4.2
=~ HFpiEk 1.4
3.29 % A B & ~ 44i% B & etk KA A AR 89 8 X Aw o] AR 37 1.4.1
3.29.1 /4 1.4.1.1
3.29.1 & B3 F A & 1.4.1.2
3.292 R E 4% A & 1.4.1.3
3.29.3 ¥ B &2 % %] syslog 1414
3.29.4 5 KA 1.4.15
3.30 AL AL 1.4.2
3.30.0 /4 1.4.2.1
3.30.1 48 A i MR T A 52 30 A # ALK 1.4.2.2
3.30.2 B RE P kit 1.4.2.3
3.30.3 & i upstream 123k Kk & 1.4.2.4
3.30.4 B AR %4 R 1425
3.30.5 B MizF B A% 4 R 1.4.2.6
3.30.6 #A4F & LA 1427

Nginx =
#F 1 #AF huliuging1989@gmail.com

A+ & [Complete Nginx Cookbook | — 4 89 3% 5 ¥ 3& St BB & E AR A ©

BB B o R R T Z R MEENITIF R R TERBEES 0 I RHE
ABE > WAF > =R % 53 FF L NGINX 89 & 2451 -

R LE . A adir

https://www.nginx.com/resources/library/complete-nginx-cookbook/
http://fanyi.youdao.com/

Part I: Load Balancing and HTTP Caching

This is Part | of lll of NGINX Cookbook. This book is about NGINX
the web server, reverse proxy, load balancer, and HTTP cache. Part |
will focus mostly on the load-balancing aspect and the advanced
features around load balancing, as well as some information around
HTTP caching. This book will touch on NGINX Plus, the licensed
version of NGINX that provides many advanced features, such as a
real-time monitoring dashboard and JSON feed, the ability to add
servers to a pool of application servers with an API call, and active
health checks with an expected response. The following chapters
have been written for an audience that has some understanding of
NGINX, modern web architectures such as n-tier or microservice
designs, and common web protocols such as TCP, UDP, and HTTP.
| wrote this book because | believe in NGINX as the strongest web
server, proxy, and load balancer we have. | also believe in NGINX's
vision as a company. When | heard Owen Garrett, head of products
at NGINX, Inc. explain that the core of the NGINX system would
continue to be developed and open source, | knew NGINX, Inc. was
good for all of us, leading the World Wide Web with one of the most
powerful software technologies to serve a vast number of use cases.
Throughout this book, there will be references to both the free and
open source NGINX software, as well as the commercial product
from NGINX, Inc., NGINX Plus. Features and directives that are
only available as part of the paid subscription to NGINX Plus will be

denoted as such. Most readers in this audience will be users and

advocates for the free and open source solution; this book’s focus is
on just that, free and open source NGINX at its core. However, this
first part provides an opportunity to view some of the advanced fea-

tures available in the paid solution, NGINX Plus.

1.0 Introduction

Today’s internet user experience demands performance and uptime.
To achieve this, multiple copies of the same system are run, and
the load is distributed over them. As load increases, another copy
of the system can be brought online. The architecture technique is
called horizontal scaling. Software-based infrastructure is increas-
ing in popularity because of its flexibility, opening up a vast world

of possibility. Whether the use case is as small as a set of two for
high availability or as large as thousands world wide, there’s a need
for a load-balancing solution that is as dynamic as the infrastruc-
ture. NGINX fills this need in a number of ways, such as HTTP,
TCP, and UDP load balancing, the last of which is discussed in
Chapter 9.

This chapter discusses load-balancing configurations for HTTP

and TCP in NGINX. In this chapter, you will learn about the

NGINX load-balancing algorithms, such as round robin, least con-
nection, least time, IP hash, and generic hash. They will aid you in
distributing load in ways more useful to your application. When
balancing load, you also want to control the amount of load being

served to the application server, which is covered in Recipe 1.4.

1.1.0 N4

o Aot HIER Rt P ARBRIR G S 8 5T B) Ao I P BE o) AL

WHAR » S MARREFBEANELEYERE EMBHRRS R > F1EA AR

=
=

FENFERIR EE RNRGE o FHHRE LW ERND P s IR

ARMIAKRFY B o d THZEME s ATRBEGTY BB AL KAL) Fok o
MEEERARAEGRERGFTRARART R » TART LT EMFEYHT
A7 S8 T AT & 2 R E 6 R BIHH M k7 R4 A ARIE © NGINX
RAET SR hie) f RGHTAF k7 F4 HTTP ~ TCP 4= UDP # #3947 » L &
UDP # #3540 & 5% 9 T AR o

AFI it HTTP A= TCP fi 835 # K o &4 230 A B HH ik - 261
TR R 0 P b A Ae Filob A o sk R MR A BT
R B T AFATA Y Ry BR% o sboh » B AT £ % 69F

Ry BB AL S B EAF 9 E L o

1.0 Introduction

Today’s internet user experience demands performance and uptime.
To achieve this, multiple copies of the same system are run, and
the load is distributed over them. As load increases, another copy
of the system can be brought online. The architecture technique is
called horizontal scaling. Software-based infrastructure is increas-
ing in popularity because of its flexibility, opening up a vast world

of possibility. Whether the use case is as small as a set of two for
high availability or as large as thousands world wide, there’s a need
for a load-balancing solution that is as dynamic as the infrastruc-
ture. NGINX fills this need in a number of ways, such as HTTP,
TCP, and UDP load balancing, the last of which is discussed in
Chapter 9.

This chapter discusses load-balancing configurations for HTTP

and TCP in NGINX. In this chapter, you will learn about the

NGINX load-balancing algorithms, such as round robin, least con-
nection, least time, IP hash, and generic hash. They will aid you in
distributing load in ways more useful to your application. When
balancing load, you also want to control the amount of load being

served to the application server, which is covered in Recipe 1.4.

1.1.0 N4

o Aot HIER Rt P ARBRIR G S 8 5T B) Ao I P BE o) AL

WHAR » S MARREFBEANELEYERE EMBHRRS R > F1EA AR

=
=

FENFERIR EE RNRGE o FHHRE LW ERND P s IR

ARMIAKRFY B o d THZEME s ATRBEGTY BB AL KAL) Fok o
MEEERARAEGRERGFTRARART R » TART LT EMFEYHT
A7 S8 T AT & 2 R E 6 R BIHH M k7 R4 A ARIE © NGINX
RAET SR hie) f RGHTAF k7 F4 HTTP ~ TCP 4= UDP # #3947 » L &
UDP # #3540 & 5% 9 T AR o

AFI it HTTP A= TCP fi 835 # K o &4 230 A B HH ik - 261
TR R 0 P b A Ae Filob A o sk R MR A BT
R B T AFATA Y Ry BR% o sboh » B AT £ % 69F

Ry BB AL S B EAF 9 E L o

1.1 HTTP Load Balancing

Problem

You need to distribute load between two or more HTTP servers.

)

’rﬁ

KkRpHER>RE 26X EHTTP R%

o\

o

Solution
Use NGINX’s HTTP module to load balance over HTTP servers

using the upstream block:

upstream backend {
server 10.10.12.45:80 weight=1;
server app.example.com:80 weight=2;

}
server {
location / {
proxy_pass http://backend;
}
}

This configuration balances load across two HTTP servers on port
1. The weight parameter instructs NGINX to pass twice as many
connections to the second server, and the weight parameter defaults

to 1.

S
1% B NGINX & HTTP £tk » 3§15 K9 X B A upstream 3 %48 4K & HTTP

MR % & RA o IR B

upstream backend {
server 10.10.12.45:80 weight=1;
server app.example.com:80 weight=2;

}
server {
location / {
proxy_pass http://backend;
}
}

BEPRRATAEKIAB0#H0 HTTP IR EM AR % S £7 - weight 5% & =

EAERIEH 2 ANiF R 5 K %) app.example.com:80 IR %% » CHIEKIAMEA 1 o

Discussion

The HTTP upstream module controls the load balancing for HTTP.
This module defines a pool of destinations, either a list of Unix
sockets, IP addresses, and DNS records, or a mix. The upstream
module also defines how any individual request is assigned to any of
the upstream servers.

Each upstream destination is defined in the upstream pool by the
server directive. The server directive is provided a Unix socket, IP
address, or an FQDN, along with a number of optional parameters.
The optional parameters give more control over the routing of
requests. These parameters include the weight of the server in the
balancing algorithm; whether the server is in standby mode, avail-
able, or unavailable; and how to determine if the server is unavail-
able. NGINX Plus provides a number of other convenient
parameters like connection limits to the server, advanced DNS reso-
lution control, and the ability to slowly ramp up connections to a

server after it starts.

g

HTTP #£3: 8 upstream A T X B KL HTTP R % 35 3 R 947 o 3k
RNEXL—NBAARREEEEL > €TAZ UNIX £45F ~ IP 3ik - DNS 2%
KEN 8 RAIE A B E 5 3o upstream & 7T LA weight 54k B 0 4= fT
>R ERBERARE S -

Fi & HTTP MR % % /& upstream 3k %46 4+ & server 18 4B & 7 & ° server

15 4B UNIX £4F ~ P 33k 3 FQDN(Fully Qualified Domain Name: 4%
TG) B— BT Ak o TS RABHmLIERERS R - €1 4R T 7
RGBT E R weight 540 I B ARREE LG TH » BRbofTH W R % % T A
&9 max_fails 45 44 fail_timeout 454 - NGINX Plus /R A 424% T % % L4k
HARHE o Wl R 5 B0 EERH] ~ HADNSEITIEH » UAEMRFER)G

HZROEBRIRS EGT -

1.2 TCP Load Balancing

Problem

You need to distribute load between two or more TCP servers.

)

o
a

ﬁﬁ

¥FER» LB 2 6L TCP R %

o\

Solution

Use NGINX’s stream module to load balance over TCP servers

using the upstream block:

stream {

upstream mysql_ {
server 1.example.com:3306 weight=5;
server 2.example.com:3306;
server 10.10.12.34:3306 backup;

}

server {
listen 3306;
proxy_pass mysql_ ;

}

The server block in this example instructs NGINX to listen on TCP
port 3306 and balance load between two MySQL database read rep-
licas, and lists another as a backup that will be passed traffic if the

primaries are down.
fR Ry %
£ NGINX # stream €3 A 1%] upstream 3} %454 50 % 6 TCP R % % fi #

B

stream {

upstream mysql_ {
server 1.example.com:3306 weight=5;
server 2.example.com:3306;
server 10.10.12.34:3306 backup;
}
server {
listen 3306;
proxy_pass mysql_ ;
}

) ¥ 89 server k245448 & NGINX %97 3306 3% 289 % & MySQL %% &
I, GBI HE > E P 10.10.12.34:3306 EA S A HIEER 5 R 5 5 HF

Ry R KRB 2R R o

Discussion

TCP load balancing is defined by the NGINX stream module. The
stream module, like the HTTP module, allows you to define upstream
pools of servers and configure a listening server. When configuring
a server to listen on a given port, you must define the port it’s to lis-
ten on, or optionally, an address and a port. From there a destina-
tion must be configured, whether it be a direct reverse proxy to
another address or an upstream pool of resources.

The upstream for TCP load balancing is much like the upstream for
HTTP, in that it defines upstream resources as servers, configured
with Unix socket, IP, or FQDN; as well as server weight, max num-
ber of connections, DNS resolvers, and connection ramp-up peri-
ods; and if the server is active, down, or in backup mode.

NGINX Plus offers even more features for TCP load balancing.
These advanced features offered in NGINX Plus can be found

throughout Part | of this book. Features available in NGINX Plus,

such as connection limiting, can be found later in this chap-
ter. Health checks for all load balancing will be covered in Chapter 2.
Dynamic reconfiguration for upstream pools, a feature available in

NGINX Plus, is covered in Chapter 8.
2t

TCP i #3971 /£ stream 23k F B & 5 I, o stream 123k £ LT http £k o
Fo & i F 2/ server 3R 4L A listen 48 4B B AF WU 5% O R P Aesg 0 o
BE - F2AAREDRRS > BARRE T A RIZIR % X upstream 454
Pl B 6930 o TCP i 839481 £ 3 F 69 upstream 15 4B Ef HTTP il £
¥ #5923 P 49 upstream 154 B B8l o TCP /R4 % /£ server 154 P& B »
X FI# A UNIX £3F ~ IPH3ak % FQDN(Fully Qualified Domain Name:
AR E L) s BT A iz 4189 weight i & A%k ~ kR K& 44k ~ DNS @47
£~ HWR S ZGT AAe B H A &%k %4 backup %%k —Af 46 TCP it #
¥ H#rF1£ A - NGINX Plus offers even more features for TCP load balan-
cing.These advanced features offered in NGINX Plus can be found
throughout Part | of this book. Features available in NGINX Plus,

such as connection limiting, can be found later in this chap-

ter. Health checks for all load balancing will be covered in Chapter 2.
Dynamic reconfiguration for upstream pools, a feature available in

NGINX Plus, is covered in Chapter 8.

1.3 il & ¥ 41 H % (Load-Balancing Methods)

Problem

Round-robin load balancing doesn'’t fit your use case because you

have heterogeneous workloads or server pools.

=] &R
HFTRBEANFH GG AMRS B RRF B EHE > 4619 (round-robin) §i # 39 1 B %

REmALEFR -

Solution

Use one of NGINX’s load-balancing methods, such as least connec-

tions, least time, generic hash, or IP hash:

upstream backend {
least_conn;
server backend.example.com;
server backendl.example.com;

This sets the load-balancing algorithm for the backend upstream

pool to be least connections. All load-balancing algorithms, with the
exception of generic hash, will be standalone directives like the pre-
ceding example. Generic hash takes a single parameter, which can be

a concatenation of variables, to build the hash from.

L
1% F] NGINX #2469 35 © R 8398 F % » 4= © &V % 34 (least connections)

T 447k A2 Bt 18] (leaest time) ~ i@ A 3% 7] F- % (generic hash)3k IP # 2 B % (IP hash) :

upstream backend {
least_conn;
server backend.example.com;
server backendl.example.com;

L @4y least_conn 1544 upstream T i &89 EHIR % > B RA RV EFEK
RBGE IR RN AR o AR BHHEIEELS > hTARAALTBA
Hide L@l — A A — AL S FRRE—ATRE o AR RS FR—A

g WTUME— AP R EEMPEER > RWEHIIE -

Discussion

Not all requests or packets carry an equal weight. Given this, round
robin, or even the weighted round robin used in examples prior, will
not fit the need of all applications or traffic flow. NGINX provides a
number of load-balancing algorithms that can be used to fit particu-
lar use cases. These load-balancing algorithms or methods can not
only be chosen, but also configured. The following load-balancing

methods are available for upstream HTTP, TCP, and UDP pools:

gk

L RBEEDR FEMAGERFRIELE RN ETMRANGRE o HLFib s
4o LA BT R 69 4618 S AR A A E 894619 R BBk o TR R AR R KA 8y
ER R B ER o NGINX BT — A7) 69 f B9 % > AH TR ER
Wi o FTARBEE i B398 B AR T A4t st 1k - 7 wFEFRE 0 JEE
#R¥T vA 2 1 T upstream 34454 F 69 HTTP ~ TCP #= UDP # #& 34#7R %

HHk o

Round robin

The default load-balancing method, which distributes requests

in order of the list of servers in the upstream pool. Weight can

be taken into consideration for a weighted round robin, which
could be used if the capacity of the upstream servers varies. The
higher the integer value for the weight, the more favored the
server will be in the round robin. The algorithm behind weight

is simply statistical probability of a weighted average. Round
robin is the default load-balancing algorithm and is used if no

other algorithm is specified.

519 i ﬁ%?ﬁ?’?iﬁ(Round robin)

NGINX JB % & Bk 8 R B398 5% » % R4 5 K29 & 2| upstream 1543

FEREGSAREFENRTOEE—MRES - TUAL L ARSF E 6 7 &

S 0 S MR % B 45 % R 89 % i E (weight) « AL #4875 B 644K » 95
KK B % 0E RG] o EELEZSHAL » ARIEG RRE RGBT

WLERGAT o s A BKING R BB L > A ZA G T A R BIGETIE 4

BERLTRA -

Least connections

Another load-balancing method provided by NGINX. This
method balances load by proxying the current request to the
upstream server with the least number of open connections
proxied through NGINX. Least connections, like round robin,
also takes weights into account when deciding to which server

to send the connection. The directive name is least_conn.

Vi 34 0 &3 #7 B % (Least connections)

NGINX R 4% & #6975 — 4 R B #H % - €25 Pk Lo L 2

upstream AR 2 AR E ST » S AT A EZEHR IO AMRE S
TR ARH o BRI EBRA R > REEMBWORELR > kAT
R EIFH ARG ERE S 615 FE R o BIGSNIELHRA

least_conn °

Least time

Available only in NGINX Plus, is akin to least connections in
that it proxies to the upstream server with the least number of
current connections but favors the servers with the lowest aver-
age response times. This method is one of the most sophistica-
ted load-balancing algorithms out there and fits the need of
highly performant web applications. This algorithm is a value
add over least connections because a small number of connec-
tions does not necessarily mean the quickest response. The

directive name is least_time.

42 0h Sz B JA) 1 8% 35 47 % (least time)

% H A NGINX PLUS R AR 424 » Fo ik S & BRI AR M > e F K
PREFH R R EEG R AR E o XA BYE KR E ROk
Z— RBERATEEHMEEY Web RESE A B[HOLEFH T - mF %k
AR Y E R R BGE L EGRACER s BARD G5 R EEFEERA

F Bty o %4546 B B L AR A least_time °

Generic hash

The administrator defines a hash with the given text, variables
of the request or runtime, or both. NGINX distributes the load
amongst the servers by producing a hash for the current request

and placing it against the upstream servers. This method is very

useful when you need more control over where requests are sent
or determining what upstream server most likely will have the
data cached. Note that when a server is added or removed from
the pool, the hashed requests will be redistributed. This algo-
rithm has an optional parameter, consistent, to minimize the

effect of redistribution. The directive name is hash.

W R #5583 8 H % (Generic hash)

Me% 3B RARBERRETHRBYGIA s TEXLA PR EHAE
kA BRI o B A R IAER AR — & AR S RS 0
WERYRBE o £ F B EE KRBT R AT > K435 1 K R K3
CEARBEANRNMEENLEHFT > RHEREFTARN - FTRIEZE
8% » f£ upstream ¥ A & AR % 5 A e A XM TRET 0 & EH TR # 4T
HE 0 Bf o GAE SRR T — AT 89 5 BT RRE I — BB RS

RAERREETEFRGNERET o %IGLHEEL A hash o

IP hash

Only supported for HTTP, is the last of the bunch. IP hash uses
the client IP address as the hash. Slightly different from using
the remote variable in a generic hash, this algorithm uses the
first three octets of an IPv4 address or the entire IPv6 address.
This method ensures that clients get proxied to the same
upstream server as long as that server is available, which is
extremely helpful when the session state is of concern and not
handled by shared memory of the application. This method also
takes the weight parameter into consideration when distribut-

ing the hash. The directive name is ip_hash.

IP # 7] ft #3541 F 7% (IP hash)

BRI ER XA HTTP il » Bl HEZ P sx6) IP dbak k4 k7|44 o
ARTRAFERTEO@MET) ok IPRI LR AL E IPv4 97T

EANG AL FEA IPV6 Redk sk A A TME o X2 F B 205
MR TAE G REG R RARE R RBRIER —AE P 5%
HR B ARETRAGERLT » Kz A BRI -6 MREREL -

BAEA PR TR E AR - 44540 & B % #Z ip_hash °

1.1.4 TR & 4

22

2.0 Introduction

While HTTP may be a stateless protocol, if the context it's to convey
were stateless, the internet would be a much less interesting place.
Many modern web architectures employ stateless application tiers,
storing state in shared memory or databases. However, this is not
the reality for all. Session state is immensely valuable and vast in
interactive applications. This state may be stored locally for a num-
ber of reasons; for example, in applications where the data being
worked is so large that network overhead is too expensive in perfor-
mance. When state is stored locally to an application server, it is
extremely important to the user experience that the subsequent
requests continue to be delivered to the same server. Another por-
tion of the problem is that servers should not be released until the
session has finished. Working with stateful applications at scale
requires an intelligent load balancer. NGINX Plus offers multiple
ways to solve this problem by tracking cookies or routing.

NGINX Plus’s sticky directive alleviates difficulties of server affin-

ity at the traffic controller, allowing the application to focus on its
core. NGINX tracks session persistence in three ways: by creating
and tracking its own cookie, detecting when applications prescribe

cookies, or routing based on runtime variables.

2.0 f

R HTTP iR BK A Wi o 124 2 Z 8% R 15 A7 A AT £ R A 0935 B 6915 o

BAERE S EARATR 2R Web R REEAT—MERSGZARY > @

T 2% (session)F B N A REAEE T o TTH > ZHFFLIPYGFEL o 2Fx4 T
RAYGRLRREARIEF AFRNARL o 2R HETRET—AIOEAEELE » F 4
EGHAERAREEF EFI—RAFTREMOXERIERS > FEMETH KK
REBEANIREE » I ERIREA P ERYZBIA—6MREE R P IK
B ANTEEEL RO ERAWEE > MEEMNT MR - EELAZ R

RO RS ELER 218 FREWFROABER AT R -

2.0 Introduction

While HTTP may be a stateless protocol, if the context it's to convey
were stateless, the internet would be a much less interesting place.
Many modern web architectures employ stateless application tiers,
storing state in shared memory or databases. However, this is not
the reality for all. Session state is immensely valuable and vast in
interactive applications. This state may be stored locally for a num-
ber of reasons; for example, in applications where the data being
worked is so large that network overhead is too expensive in perfor-
mance. When state is stored locally to an application server, it is
extremely important to the user experience that the subsequent
requests continue to be delivered to the same server. Another por-
tion of the problem is that servers should not be released until the
session has finished. Working with stateful applications at scale
requires an intelligent load balancer. NGINX Plus offers multiple
ways to solve this problem by tracking cookies or routing.

NGINX Plus’s sticky directive alleviates difficulties of server affin-

ity at the traffic controller, allowing the application to focus on its
core. NGINX tracks session persistence in three ways: by creating
and tracking its own cookie, detecting when applications prescribe

cookies, or routing based on runtime variables.

2.0 f

R HTTP iR BK A Wi o 124 2 Z 8% R 15 A7 A AT £ R A 0935 B 6915 o

BAERE S EARATR 2R Web R REEAT—MERSGZARY > @

T 2% (session)F B N A REAEE T o TTH > ZHFFLIPYGFEL o 2Fx4 T
RAYGRLRREARIEF AFRNARL o 2R HETRET—AIOEAEELE » F 4
EGHAERAREEF EFI—RAFTREMOXERIERS > FEMETH KK
REBEANIREE » I ERIREA P ERYZBIA—6MREE R P IK
B ANTEEEL RO ERAWEE > MEEMNT MR - EELAZ R

RO RS ELER 218 FREWFROABER AT R -

1.2.1 #¢ 2 Cookie 2| /R % &

27

3.0 Introduction

For a number of reasons, applications fail. It could be because of
network connectivity, server failure, or application failure, to name a
few. Proxies and load balancers must be smart enough to detect fail-
ure of upstream servers and stop passing traffic to them; otherwise,
the client will be waiting, only to be delivered a timeout. A way to
mitigate service degradation when a server fails is to have the proxy
check the health of the upstream servers. NGINX offers two differ-
ent types of health checks: passive, available in the open source ver-
sion; as well as active, available only in NGINX Plus. Active health
checks on a regular interval will make a connection or request to the
upstream server and have the ability to verify that the response is
correct. Passive health checks monitor the connection or responses
of the upstream server as clients make the request or connection.
You may want to use passive health checks to reduce the load of
your upstream servers, and you may want to use active health
checks to determine failure of an upstream server before a client is

served a failure

)i
3.0 H I~
FRE LR Tl TM&SERELER > Web RERZH R ARFAFEFRASK
B RAL Tk e o BT 0 ARIER R RIS T BRI A fe AL M AR IE A R
B89 Web JREZE LA G RIS » RARTEFRSRP| L L RZGRE S -
BBt » B PSH R Pl E ARG RS » L RIFRFHERSE

B RILIR G B AL G 8 K FE R M E R - RFAIBTMRIEIR G B AL R &

—FRBBRIEZIR S 55 098 3 % o NGINX R % 5426 A A+ R Bl 69 B e 77 %
WA Fe T AN o FFIRARE NGINX FRAE 4 M 58 0 NGINX PLUS #4t £ 34
M EE o £ L IR IEE > NGINX REMR S @R KER S L o ey L & E R
o RAERER S B EF o » NEAMKREIRE S EFET o WAL EHRERL :
NGINX R % %5 38 S AR M B P 5% K 3% 6978 R AR I (R R B3 H7) IR 5 55 69 om L 45 R 47
FIBTRREIR G B A TR o AR F R > TARRERBEREZRSZGRRET

EF AWM N GG E P om KRk R RSB R RERBR S E -

3.0 Introduction

For a number of reasons, applications fail. It could be because of
network connectivity, server failure, or application failure, to name a
few. Proxies and load balancers must be smart enough to detect fail-
ure of upstream servers and stop passing traffic to them; otherwise,
the client will be waiting, only to be delivered a timeout. A way to
mitigate service degradation when a server fails is to have the proxy
check the health of the upstream servers. NGINX offers two differ-
ent types of health checks: passive, available in the open source ver-
sion; as well as active, available only in NGINX Plus. Active health
checks on a regular interval will make a connection or request to the
upstream server and have the ability to verify that the response is
correct. Passive health checks monitor the connection or responses
of the upstream server as clients make the request or connection.
You may want to use passive health checks to reduce the load of
your upstream servers, and you may want to use active health
checks to determine failure of an upstream server before a client is

served a failure

)i
3.0 H I~
FRE LR Tl TM&SERELER > Web RERZH R ARFAFEFRASK
B RAL Tk e o BT 0 ARIER R RIS T BRI A fe AL M AR IE A R
B89 Web JREZE LA G RIS » RARTEFRSRP| L L RZGRE S -
BBt » B PSH R Pl E ARG RS » L RIFRFHERSE

B RILIR G B AL G 8 K FE R M E R - RFAIBTMRIEIR G B AL R &

—FRBBRIEZIR S 55 098 3 % o NGINX R % 5426 A A+ R Bl 69 B e 77 %
WA Fe T AN o FFIRARE NGINX FRAE 4 M 58 0 NGINX PLUS #4t £ 34
M EE o £ L IR IEE > NGINX REMR S @R KER S L o ey L & E R
o RAERER S B EF o » NEAMKREIRE S EFET o WAL EHRERL :
NGINX R % %5 38 S AR M B P 5% K 3% 6978 R AR I (R R B3 H7) IR 5 55 69 om L 45 R 47
FIBTRREIR G B A TR o AR F R > TARRERBEREZRSZGRRET

EF AWM N GG E P om KRk R RSB R RERBR S E -

3.1 What to Check

Problem

You need to check your application for health but don’t know what

to check.

] %

RA IR G B ATH 2 M » A2 Rk defT 40 MR 4 B4 BRI o

Solution

Use a simple but direct indication of the application health. For
example, a handler that simply returns an HTTP 200 response tells

the load balancer that the application process is running.

Rk &

R — AR EALR R T R IR RAE AR o do o 5 39 B 38 R IAL R 2K

MR BEgrA RS AL A 200 FIBT L ARG SR BEAEFER

=

Discussion

It's important to check the core of the service you're load balancing
for. A single comprehensive health check that ensures all of the sys-
tems are available can be problematic. Health checks should check
that the application directly behind the load balancer is available
over the network and that the application itself is running. With
application-aware health checks, you want to pick an endpoint that

simply ensures that the processes on that machine are running. It

may be tempting to make sure that the database connection strings
are correct or that the application can contact its resources. How-

ever, this can cause a cascading effect if any particular service fails.

gk

SRR A P oo R RAGRBEAZ SR 2 ARG B AT EA NI TR
AL AL — AR BN T R > RS EZEGTH > BEHFZLETE o

1 B A D WM EHEEMNE R RGN EF ARG 2T EATER »

KRS TR » XL R BGH R RBMNB S ESTHETE -
—f& o TR E AR R AAITRELN » RARENESESTTH o oo »
FRINBIE AT BT R TR EFRILC 8 TR o T — AR5 k38

TS| R G HEANR S RTH -

3.3 TCP Health Checks

Problem

You need to check your upstream TCP server for health and remove

unhealthy servers from the pool.

] %

FEHMNTCP R EXGER FMREETHRRBIRSE o

Solution

Use the health_check directive in the server block for an active

health check:

stream {
server {
listen 3306;
proxy_pass _backend;
health_check interval=10 passes=2 fails=3;

The example monitors the upstream servers actively. The upstream
server will be considered unhealthy if it fails to respond to three or
more TCP connections initiated by NGINX. NGINX performs the
check every 10 seconds. The server will only be considered healthy

after passing two health checks.
fRRTT R
f server 3% 454 F 1% A health_check i #4854 » st KL % 35 # 17

AR

stream {
server {
listen 3306;
proxy_pass _backend;
health_check interval=10 passes=2 fails=3;

>k,0

Loy i E 2 REEF GRS BZAATIAH BN o o RBANRTREF ERGBEFR

o\

of 2 NGINX IR 4869 3 VAL TCP H41F K » MALIAA L RGBS -

ZJ& » NGINX R % 5 2418 10 ## 47— REEAAD o

Discussion

TCP health can be verified by NGINX Plus either passively or
actively. Passive health monitoring is done by noting the communi-
cation between the client and the upstream server. If the upstream
server is timing out or rejecting connections, a passive health check
will deem that server unhealthy. Active health checks will initiate
their own configurable checks to determine health. Active health
checks not only test a connection to the upstream server, but can

expect a given response.
43

7 NGINX PLUS #z A ¥ Fl i 324544 5 44 M o . 50 40 D) B o 30 A R B i e 2 F
B P m G WAREIR S B 6k Rem 2 e M EILEY o o R — Ak RABI R EH R M
A A D A AT IR % 35 KK o £ AW N &8 it 9144569 NGINX 4548 B
RBMIR S B AT KR o ZFHBNEZT AL —ANR G EHE > LT AR — AT

B ok i o

WH(EA AN R)

ZELE [TCP Health Checks! A& NGINX BEEZEMGETEREHEHL » T L HBRTR
AR A

F= NGINX PLUS(7 1L 5R) 8 TCP & B Ao M i B 4L 32

TODO #81% [TCP Health Checks |

https://www.nginx.com/resources/admin-guide/tcp-health-check/
https://www.nginx.com/resources/admin-guide/tcp-health-check/

3.4 HTTP Health Checks

Problem
You need to actively check your upstream HTTP servers for health.
=] AR

TR I HAEMHTTP R E@ERS

Solution

Use the health_check directive in a location block:

http {
server {
location / {
proxy_pass http://backend;
health_check interval=2s
fails=2
passes=5
uri=/
match=welcome;
}
}

match welcome {

status 200;
header Content-Type = text/html;
body ~ "welcome to nginx!";

This health check configuration for HTTP servers checks the health
of the upstream servers by making an HTTP request to the URI /'
every two seconds. The upstream servers must pass five consecutive

health checks to be considered healthy and will be considered

unhealthy if they fail two consecutive checks. The response from the
upstream server must match the defined match block, which defines
the status code as 200, the header Content-Type value as 'text/

html', and the string "Welcome to nginx!" in the response body.

fR kTR

f£ location 3% 4% 4 F 1% A health_check 4§44 :

http {
server {
location / {
proxy_pass http://backend;
health_check interval=2s
fails=2
passes=5
uri=/
match=welcome;
}
}

match welcome {

status 200;
header Content-Type = text/html;
body ~ "welcome to nginx!";

EH] s AR EEARER S EHER 24 0 LE—ANE] [URI 8935 KRN
MRER S B AGRK - MRERS B ELERE MER wRETAH 24
ik Ko K AR F 35 K3 o BAREIR 5 694 o 2 A& X

{2 match 3484 P B E » M Ak A4 A 200, A Content-Type X & 4

'text/html',*71 & body # "Welcome to nginx!" F#F $ 6ok & A A SR % % o

Discussion

HTTP health checks in NGINX Plus can measure more than just

the response code. In NGINX Plus, active HTTP health checks
monitor based on a number of acceptance criteria of the response
from the upstream server. Active health check monitoring can be
configured for how often upstream servers are checked, the URI to
check, how many times it must pass this check to be considered
healthy, how many times it can fail before being deemed unhealthy,
and what the expected result should be. The match parameter points
to a match block that defines the acceptance criteria for the
response. The match block has three directives: status, header, and

body. All three of these directives have comparison flags as well.

AN

136

a

#£ NGINX PLUS BRAF » 4 T 3 id v o R AR R A WA AR EIR £ B AT H L o

b

1T RE 95 3R E 8 — o 2 35 AR RPN BT A G A AL 0 4o 1 £ 89 BT 1A 8] [

(%) > £ 3hik Koy URI AL » 4 B4 W 83 ok HR K ROk Hofe T o0 2
%R % o f& health_check 54 ¥ &9 match % %45 ©) match 3k %484

match 3k %48 4B & & LT A=A 69 m > 6.4 status ~ header #= body 4§ 4 >

PeA1AT A & B 84 M AR 4E o

WA (F A A R)

XA L#E [HTTP Health Checks | & NGINX MR % & B M #) % 32 R i& 4 3042 » £ 2R MAR

RE A
F= NGINX PLUS(7 AL #R) & HTTP & B A 0 fic B 4 32

TODO #31% HTTP Health Checks |

https://www.nginx.com/resources/admin-guide/http-health-check/
https://www.nginx.com/resources/admin-guide/http-health-check/

5.0 Introduction

Caching accelerates content serving by storing request responses to
be served again in the future. Content caching reduces load to
upstream servers, caching the full response rather than running
computations and queries again for the same request. Caching
increases performance and reduces load, meaning you can serve
faster with fewer resources. Scaling and distributing caching servers
in strategic locations can have a dramatic effect on user experience.
It's optimal to host content close to the consumer for the best perfor-
mance. You can also cache your content close to your users. This is
the pattern of content delivery networks, or CDNs. With NGINX
you’re able to cache your content wherever you can place an NGINX
server, effectively enabling you to create your own CDN. With
NGINX caching, you're also able to passively cache and serve cached

responses in the event of an upstream failure.
A

itk Regeh & R BATEA 0 A6 A G AR FlE R ik I % - atAR Rl R
"f 5 R % i AT M 2% 73 (Content Caching) » 48 a4k RAT & 3 1+ FA» iR 2
W% 35 0 ReA BERBRERFEAR c NELRBRRAMSMERE > FIKRSE R
BET > Bl ZRA RBIER L I o) R EREGIRF o TR EFRFIARY
B@kit b L ERIAPRE s AAAR AEET T S G-RRREH RELA P
Fl B REAR TP IR 4 S MR o

5.0 Introduction

Caching accelerates content serving by storing request responses to
be served again in the future. Content caching reduces load to
upstream servers, caching the full response rather than running
computations and queries again for the same request. Caching
increases performance and reduces load, meaning you can serve
faster with fewer resources. Scaling and distributing caching servers
in strategic locations can have a dramatic effect on user experience.
It's optimal to host content close to the consumer for the best perfor-
mance. You can also cache your content close to your users. This is
the pattern of content delivery networks, or CDNs. With NGINX
you’re able to cache your content wherever you can place an NGINX
server, effectively enabling you to create your own CDN. With
NGINX caching, you're also able to passively cache and serve cached

responses in the event of an upstream failure.
A

itk Regeh & R BATEA 0 A6 A G AR FlE R ik I % - atAR Rl R
"f 5 R % i AT M 2% 73 (Content Caching) » 48 a4k RAT & 3 1+ FA» iR 2
W% 35 0 ReA BERBRERFEAR c NELRBRRAMSMERE > FIKRSE R
BET > Bl ZRA RBIER L I o) R EREGIRF o TR EFRFIARY
B@kit b L ERIAPRE s AAAR AEET T S G-RRREH RELA P
Fl B REAR TP IR 4 S MR o

5.1 Caching Zones

Problem

You need to cache content and need to define where the cache is

stored.

] %

EIST LS RS E 3 T

Solution

Use the proxy_cache_path directive to define shared memory cache

zones and a location for the content:

proxy_cache_path /var/nginx/cache
keys_zone=CACHE: 60m

levels=1:2

inactive=3h

max_size=20g;

proxy_cache CACHE;

The cache definition example creates a directory for cached respon-
ses on the filesystem at /var/nginx/cache and creates a shared mem-
ory space named CACHE with 60 megabytes of memory. This
example sets the directory structure levels, defines the release of
cached responses after they have not been requested in 3 hours, and
defines a maximum size of the cache of 20 gigabytes. The
proxy_cache directive informs a particular context to use the cache

zone. The proxy_cache_path is valid in the HTTP context, and the

proxy_cache directive is valid in the HTTP, server, and location

contexts.
Rk %
1% i proxy_cache_path 38 & A5 % B X L ARE G RBGEZ NG REHBIEZ

proxy_cache_path /var/nginx/cache
keys_zone=CACHE: 60m

levels=1:2
inactive=3h

max_size=20g;
proxy_cache CACHE;

L@ ey E ¥ /£ proxy_cache path 384 F 4 AR £ X HALTEXLT EB 095

fik B % /var/nginx/cache » #1% Jl keys_zone % %812 % % CACHE &iRA

60 M 894 % W A4 = 1] 5 Fletil it levels 5 40% LB F MM & 5| » 38 inactive
BBk Ao RAB R RO & A4 3 B A R AR 3% 18] M AR > 4% A max_size

EXTHBERRTAAEMEZRA 20G -

Discussion

To configure caching in NGINX, it's necessary to declare a path and
zone to be used. A cache zone in NGINX is created with the direc-
tive proxy_cache_path. The proxy_cache_path designates a loca-
tion to store the cached information and a shared memory space to
store active keys and response metadata. Optional parameters to this
directive provide more control over how the cache is maintained

and accessed. The levels parameter defines how the file structure is
created. The value is a colon-separated value that declares the length

of subdirectory names, with a maximum of three levels. NGINX

caches based on the cache key, which is a hashed value. NGINX then
stores the result in the file structure provided, using the cache key as
a file path and breaking up directories based on the levels value.

The inactive parameter allows for control over the length of time a
cache item will be hosted after its last use. The size of the cache is
also configurable with use of the max_size parameter. Other param-
eters are in relation to the cache loading process, which loads the
cache keys into the shared memory zone from the files cached on

disk.
%

21 NGINX W &% A » HRAERE T I LEHF B RAEH R (zone) °

i it proxy_cache path #54@1& NGINX A R % % » & XA T% 513 8693
1240 Bl T 15 0% 4% 15 09 7L 3E (metadata) #= 12 47 B 42 % (active keys)# 9 2 R 5 o
EeeTie ks » TRBEE H o447 F2i5 Fl 6934 > levels 53T L4147
QRN » RLTH FHLMHEKE » BETAE T RGME > IHFEX
3% o

NGINX 8 FF A 4% 7 4 T sk - 4500H JE R #2189 cache key » 458 15 28 R vk
cache key 1F 4 L4 » RIELZ B RFICIELEH B K »

inactive %A THEH B —RIERA & G LRt 1E » BLZAAN R G %A
SRR o ZH KN T AA L max_size FRHAAITRE - TAHFRY) 5K

R TR BmBARTF > ha A% cache keys N I BREFZAHRL o

5.2 Caching Hash Keys & & 4% % °5- A4t 4

Problem

You need to control how your content is cached and looked up.

)

B X TR EREREEAR

Solution
Use the proxy_cache_key directive, along with variables to define

what constitutes a cache hit or miss:

proxy_cache_key "$host$request_uri $cookie_user";

This cache hash key will instruct NGINX to cache pages based on
the host and URI being requested, as well as a cookie that defines
the user. With this you can cache dynamic pages without serving

content that was generated for a different user.
fR Ry %
it —%& #3249 proxy_cache _key 454 » U E LM X T XL KT
EFOGHAN o
proxy_cache_key "$host$request_uri $cookie_user";
L35 o1& B R ~ 15 R URI A=/ P cookie 18 4 % /5

% 0 RMENGINX &A@ o XM > RTUNH SN BRITES > &

BB A AT P AR ATE A A A AATE -

Discussion

The default proxy cache_key is "$scheme$proxy host
$request_uri". This default will fit most use cases. The variables
used include the scheme, HTTP or HTTPS, the proxy_host, where
the request is being sent, and the request URI. All together, this
reflects the URL that NGINX is proxying the request to. You may
find that there are many other factors that define a unique request
per application, such as request arguments, headers, session identifi-
ers, and so on, to which you’ll want to create your own hash key
Selecting a good hash key is very important and should be thought
through with understanding of the application. Selecting a cache key
for static content is typically pretty straightforward; using the host-
name and URI will suffice. Selecting a cache key for fairly dynamic
content like pages for a dashboard application requires more knowl-
edge around how users interact with the application and the degree
of variance between user experiences. For security concerns you
may not want to present cached data from one user to another
without fully understanding the context. The proxy_cache_key
directive configures the string to be hashed for the cache key. The
proxy_cache_key can be set in the context of HTTP, server, and
location blocks, providing flexible control on how requests are

cached.
i
proxy_cache_key #ik1% & & "$scheme$proxy host $request_uri" ° BKIA & E

AT %A HF o BEZF @4 scheme ~ HTTP & HTTPS ~ R3Z#& %

(proxy_host) ~ # K& URI T & - £ » 144 E#4 2 NGINX KEi#F R -

BTREZN > X THEARLARF » AH S LG RETAZ L—MHE—895 K >
Wik RAH -~ KM ~ 2R RFFF » BF R A THHRIE o XFR
CEEI > sF—Af o THLCHRIBRESH T —ANE—09F R edeif K55
1% K 2k (headers) ~ 47517 1% (session identifiers) 5 % » X AR =T A A T
MEATHYRI|ESL - EMBEREATERZFGER » gl ZLF—NFHT
WL -5 FER WAL RABIATREL AL BT T EE
1% F 3% 4% (hostname)f# i K URI st T AT o« mEAM TR EAZZ LY » EAHAR
FAT @ MNEZALY)THRAP Fo AT E ~ ARR PARSRZEHER > %
MBEBEL c W REGABRRE > RTRIFEZEHK— NP R G RIER
R FH IR P oo proxy_cache key 4B B T A T4 5 £ RAAETH > wiigdH
T A& HTTP ~ server ~ location 3k & 48 & LT L € L > E I35 R fT 4 5 89

R EIEH] o

5.3 Cache Bypass %3 % &

Problem

You need the ability to bypass the caching.

Solution

Use the proxy_cache_bypass directive with a nonempty or nonzero
value. One way to do this is by setting a variable within location

blocks that you do not want cached to equal 1:

proxy_cache_bypass $http_cache_bypass;

The configuration tells NGINX to bypass the cache if the HTTP

request header named cache_bypass is set to any value that is not 0.
fR k%
¥ proxy_cache _passby 464 > & EMRIFEHE R 0 - —#Pi&42 & » /£ location

BB AFRE—MEFT 18 proxy_cache_passby 154

proxy_cache_bypass $http_cache_bypass;

B %42 NGINX R % % » 42—/~ HTTP cache_passby % Kk 69 48% 8 % 3F

O(H3EE) > MRt ikih R#ATE AL o

Discussion

There are many scenarios that demand that the request is not

cached. For this, NGINX exposes a proxy_cache_bypass directive
that when the value is nonempty or nonzero, the request will be sent
to an upstream server rather than be pulled from cache. Interesting
techniques and solutions for cache bypass are derived from the need
of the client and application. These can be as simple as a request
variable or as intricate as a number of map blocks.

For many reasons, you may want to bypass the cache. One impor-
tant reason is troubleshooting and debugging. Reproducing issues
can be hard if you're consistently pulling cached pages or if your
cache key is specific to a user identifier. Having the ability to bypass
the cache is vital. Options include but are not limited to bypassing
cache when a particular cookie, header, or request argument is set.
You can also turn off cache completely for a given context such as a

location block by setting proxy_cache off;

it

YL RAHFTH AR ERBAITEALE » 23k > NGINX #24 proxy_cache_passby
Ak LY F o WA AEREAFERFE > LAY H R URI & EHERLES

WREREE > AP ANES TR o ol Al zded s FRESZE P stfo 2 A6y 15

A o CHRTARF MAn Bl —ME R B E—HHE > AT AR E R KORGS5 -

ERABOHRARLIESR o LF o —AERHLADHFRABREEABRALA o bR

LRI F—BEREE AL R P RITEE > ZE S AR I - RETE L

cookie ~ 1 Kk (headers) & i1& RAZFH & AT » MAE—-ANLRE G - s
NGINX JR % % & #2.4% /£ location 3484 F ¥ proxy_cache 15 4% & A off » T AN

5.4 Cache Performance % 7 1£ 4t

Problem

You need to increase performance by caching on the client side.

Solution

Use client-side cache control headers:

location ~* .(css|js)$ {
expires 1y;

add_header Cache-Control "public";

This location block specifies that the client can cache the content of
CSS and JavaScript files. The expires directive instructs the client
that their cached resource will no longer be valid after one year. The

add_header directive adds the HTTP response header CacheControl to the response, with a
value of public, which allows any

caching server along the way to cache the resource. If we specify pri-

vate, only the client is allowed to cache the value.
Bk %
R E P 3 B A HEBLH Bk

location ~* .(css|js)$ {
expires 1y;

add_header Cache-Control "public";

% location k454X BRI G » & P sn 7 vAxf CSS A= JS X H# T4 5 © expires
BN PTH %40 A % E AN 1 - add_header 48 4-3% HTTP 74 & 3k Cache-Control
% B public Fthm AR ¥ 0 A RITAGEBRS BHRTAEZSE TR o R CHE

% B4 private » M A FTARAFE P bt FRJATES o

Discussion

Cache performance has to do with many variables, disk speed being
high on the list. There are many things within the NGINX configu-
ration you can do to assist with cache performance. One option is to
set headers of the response in such a way that the client actually
caches the response and does not make the request to NGINX at all,

but simply serves it from its own cache.

st
SHOMRFTSREAX AF#EES AHMEGERGEZRAZL— o
£ NGINX Be B354 F > ARG AR IE 4 - p LB PR E > BT
1% & Cache-Control " 2 8 &k » B P it 2 BHNABZRE S » A2 HR

IR % 3 RARFPERE ©

9.0 Introduction

User Datagram Protocol (UDP) is used in many contexts, such as
DNS, NTP, and Voice over IP. NGINX can load balance over
upstream servers with all the load-balancing algorithms provided to
the other protocols. In this chapter, we’ll cover the UDP load balanc-

ing in NGINX.

9.0 /-3

Ml P #4884 (UDP) £ % #3 % T& M » %2 DNS ~ NTP & % - IPi& & (Voice
over IP)R % o NGINX =T A {£ upstream 3k % 45 4 4& B BT A 89 0 8398 F ik

23 UDP 89 R #3987 » AE4%%5 UDP fi ¥ #Hita xm g o

9.0 Introduction

User Datagram Protocol (UDP) is used in many contexts, such as
DNS, NTP, and Voice over IP. NGINX can load balance over
upstream servers with all the load-balancing algorithms provided to
the other protocols. In this chapter, we’ll cover the UDP load balanc-

ing in NGINX.

9.0 /-3

Ml P #4884 (UDP) £ % #3 % T& M » %2 DNS ~ NTP & % - IPi& & (Voice
over IP)R % o NGINX =T A {£ upstream 3k % 45 4 4& B BT A 89 0 8398 F ik

23 UDP 89 R #3987 » AE4%%5 UDP fi ¥ #Hita xm g o

9.1 Stream Context

Problem

You need to distribute load between two or more UDP servers.

)

TR A %4 UDP RS R S i RIYH

Solution

Use NGINX’s stream module to load balance over UDP servers

using the upstream block defined as udp:

stream {
upstream ntp {

server ntpl.example.com:123 weight=2;

server ntp2.example.com:123;

}
server {
listen 123 udp;
proxy_pass ntp;
}

This section of configuration balances load between two upstream
NTP servers using the UDP protocol. Specifying UDP load balanc-

ing is as simple as using the udp parameter on the listen directive.
iRk Tr &

NGINX stream #3252 3], UDP IR % % 69 f 883947 » 44 UDP MR % % 69 K32 489

upstream & 2& 45 &4 2 SUARAE Al UDP HrL:

stream {
upstream ntp {

server ntpl.example.com:123 weight=2;

server ntp2.example.com:123;

}
server {
listen 123 udp;
proxy_pass ntp;
}

=B P o 2t 2 648 UDP #iL89 NTP MR % & 3t 47 Rt 835 H74K32 o 5230 UDP #3L
by 5 B8 > | LB R F A server 3843k T 8 listen 48 4w E—4 udp

BB TIAT

Discussion

One might ask, “Why do you need a load balancer when you can
have multiple hosts in a DNS A or SRV record?” The answer is that
not only are there alternative balancing algorithms we can balance
with, but we can load balance over the DNS servers themselves.
UDP services make up a lot of the services that we depend on in
networked systems such as DNS, NTP, and Voice over |IP. UDP load
balancing may be less common to some but just as useful in the
world of scale.

UDP load balancing will be found in the stream module, just like
TCP, and configured mostly in the same way. The main difference is

that the listen directive specifies that the open socket is for work-

ing with datagrams. When working with datagrams, there are some
other directives that may apply where they would not in TCP, such

as the proxy_response directive that tells NGINX how many

expected responses may be sent from the upstream server, by default

being unlimited until the proxy_timeout limit is reached.
2w

RHA AL “BRAK % % Atk R SRV 12k 49 DNS 34 A# » HH LR
T AL NGINX 89 fi B8 a8%8 77 RAT89E b & > NGINX TR T
%4 R BB L > mEAZ Akt DNS IR % £ A% 247 i K39 HLE - UDP
WM T DNS ###7 ~NTP IR %% ~ IPEFRFF R EABR S - UDP fi &
Ml LT TZRA TR 2 o A28 BN L0 FH 3E 4 st o

UDP it #3545 R TCP i #3598 —# K s stream R A » HF L EA16942 A
FIEWIUF—F o ZH T RRH A > £ listen 384 F LA T UDP i

By £HF R udp B2k o sboh o A — AT UDP i tg 484 0 1%
proxy_response &4~ » proxy_response 1§ 4% %2 NGINX & % 25 WA AX 2R

$BBKE TIIAR » KIAAELIRA 6 o B 53X %] proxy_timeout & F AL ©

1.9.2 R {3 HH %

57

9.3 Health Checks

Problem

You need to check the health of upstream UDP servers.

)

#: M upstream 454 69 UDP MR % 5 & G & o

Solution

Use NGINX health checks with UDP load balancing to ensure only

healthy upstream servers are sent datagrams:

upstream ntp {
server ntpl.example.com:123 max_fails=3 fail_timeout=3s;
server ntp2.example.com:123 max_fails=3 fail_timeout=3s;

This configuration passively monitors the upstream health, setting

the max_fails directive to 3, and fail_timeout to 3 seconds.

fRkr %

*f UDP i #3g#rfic B # AT AR M > A4k R 3B E84T69 UDP MR % & & %
FIER/R L :

upstream ntp {
server ntpl.example.com:123 max_fails=3 fail_timeout=3s;
server ntp2.example.com:123 max_fails=3 fail_timeout=3s;

e B R R A 3 A2 M H 78 0 F& max_fails 48 4% E A4 3 X » fail_timeout

REA A e

Discussion

Health checking is important on all types of load balancing not only
from a user experience standpoint but also for business continuity.
NGINX can actively and passively monitor upstream UDP servers
to ensure they’re healthy and performing. Passive monitoring
watches for failed or timed-out connections as they pass through
NGINX. Active health checks send a packet to the specified port,

and can optionally expect a response.

=t

FATH R 8398 > RN APIREAR > TARLAR > REAIAE X
F& o NGINX Fl#£#2 4 UDP i 8398 Lo Aok sh e M 7 £ o M sh4a M & 5]
R MR E RIE A KRG FI W o ZahAe M & T 3h K% FIE oL fids

s A EE TR R P BTAR £ & T A 3K o

Part ll: Security and Access

This is Part Il of lll of NGINX Cookbook. This part will focus on
security aspects and features of NGINX and NGINX Plus, the
licensed version of the NGINX server. Throughout this part, you

will learn the basics about controlling access and limiting abuse and
misuse of your web assets and applications. Security concepts such
as encryption of your web traffic as well as basic HTTP authentica-
tion will be explained as applicable to the NGINX server. More
advanced topics are covered as well, such as setting up NGINX to
verify authentication via third-party systems as well as through
JSON Web Token Signature validation and integrating with Single
sign-on providers. This part covers some amazing features of
NGINX and NGINX Plus such as securing links for time-limited
access and security as well as enabling Web Application Firewall
capabilities of NGINX Plus with the ModSecurity module. Some of
the plug-and-play modules in this part are only available through
the paid NGINX Plus subscription, however this does not mean that
the core open source NGINX server is not capable of these securi-

ties.

Part II: Security and Access

This is Part Il of lll of NGINX Cookbook. This part will focus on

security aspects and features of NGINX and NGINX Plus, the

licensed version of the NGINX server. Throughout this part, you

will learn the basics about controlling access and limiting abuse and

misuse of your web assets and applications. Security concepts such

as encryption of your web traffic as well as basic HTTP authentica-

tion will be explained as applicable to the NGINX server. More

advanced topics are covered as well, such as setting up NGINX to

verify authentication via third-party systems as well as through

JSON Web Token Signature validation and integrating with Single

sign-on providers. This part covers some amazing features of

NGINX and NGINX Plus such as securing links for time-limited

access and security as well as enabling Web Application Firewall

capabilities of NGINX Plus with the ModSecurity module. Some of

the plug-and-play modules in this part are only available through

the paid NGINX Plus subscription, however this does not mean that

the core open source NGINX server is not capable of these securi-

ties.

A F 89 5 =394 A2 NGINX 2 NGINX PLUS re A8 2 A4t o il i 5% =3 o
A8 % 4mR 0 BN TR 4T R E NGINX R4 5 4 S 25 HR % 8RR AR A
UM o £ RARE » 4o NGINX R 5 5 b fT18 A 2415 R 4B ho % Ao LA 8Y
HTTP ikiE o & H &L 28 E » % NGINX IR % 5 b T4 A % = 7 00E & 44
AT HAINGE > e fTiE] JSON A AR sb A £ B B A AT o sbsh > BT 2
NGINX = NGINX PLUS ha A £ % g 48 6945 M - do iz MR FdE 4] ~ 42 NGINX
PLUS »& A& &9 ModSecurity 423 71 & By K3& 7 A6 % 5 o 2t T — 2k Bp 46 Bp Fl (

plug-and-pay)#£k » 2 #6if i NGINX PLUS M ARITH I » Kfm » XA T &

k& %R AE) NGINX IR 4% £ Raeie] o

CHAPTER 11 Controlling Access 17 7] 4%

11.0 Introduction

Controlling access to your web applications or subsets of your web
applications is important business. Access control takes many forms
in NGINX, such as denying it at the network level, allowing it based
on authentication mechanisms, or HTTP responses instructing
browsers how to act. In this chapter we will discuss access control
based on network attributes, authentication, and how to specify

Cross-Origin Resource Sharing (CORS) rules.

11.0 /48

B P LIt web & A A2)F R web R ARFTF AL 5 R ERE R A EE
A% o I NGINX 8935 F 2RI X % # 0 tode)N 482 @ 5 335 Fl4EH - AT
NGINX KA F g sl » & @ HTTP Ak 5] $ &) i 8w TiR4F o KAt
WAL A M 2 /& P (network attributes) ~ & 17K IE ~ 53K 5 IR £ £ (CORS :

Cross-Origin Resource Sharing)/& | % 4 44 & 4217 o

11.1 Access Based on IP Address | 2T IP 33t
ZAREA: A

Problem

You need to control access based on the IP address of the client.

p—
0

7] &L

7l
FTEAT R P 6 P Rhk 523035 19 22 4] o 48

Solution

Use the HTTP access module to control access to protected resources:

location /admin/ {
deny 10.0.0.1;
allow 10.0.0.0/20;
allow 2001:0db8::/32;
deny all;

The given location block allows access from any IPv4 address in
10.0.0.0/20 except 10.0.0.1, allows access from IPv6 addresses in the
2001:0db8::/32 subnet, and returns a 403 for requests originating
from any other address. The allow and deny directives are valid

within the HTTP, server, and location contexts. Rules are checked in

sequence until a match is found for the remote address.
i

1& Bl HTTP 4 access 123k » 32 It AR TR 697 942 4] :

location /admin/ {
deny 10.0.0.1;
allow 10.0.0.0/20;
allow 2001:0db8::/32;
deny all;

¢ % 19 location k&5 4 FEE T A% 10.0.0.1 M85 BT A 10.0.0.0/20 IPv4
Hohtiz 18] 0 Bl B A4 2001:0db8::/32 B HF M & IPv6 3itis 7] » E ¢ IP ik
8917 19 4% 23] HTTP R A 4 403 897k % - allow #= deny &4 & HTTP - server

location LT L F4E A o F=5 M ARIE B B 690 F 3475 3K 0 B2 ICE D IEHR N o

Discussion

Protecting valuable resources and services on the internet must be
done in layers. NGINX provides the ability to be one of those layers.
The deny directive blocks access to a given context, while the allow
directive can be used to allow subsets of the blocked access. You can
use IP addresses, IPv4 or IPv6, CIDR block ranges, the keyword all,
and a Unix socket. Typically when protecting a resource, one might

allow a block of internal IP addresses and deny access from all.

43

FRPER GG TR EFRRAYEAEH o NGINX IR F ZREE FRATS B
89S o deny 84 2TRF 252 LT A7 17 » allow 4845 deny 7 6

AR BATEGAE T AE T A IP 33k ~ Pv4 3 IPV6 33k ~ & 2K 7 3 7] 2 g (
CIDR: Classless Inter-Domain Routing) ~ %4&F 3 UNIX £4# 5 © IP R4
ByF R AR R > RTE—ARIE IP A7 R %R - ELELECHA IP

Hb 8 35 1] 5k 52 BLAT A OR 69 17 Bl AEH] o

2.11.1 AT IP 3eibp B fe &

66

11.2 AIIowing Cross-Origin Resource Sharing |
¥5 3% 9% R FE R

Problem

You’re serving resources from another domain and need to allow

CORS to enable browsers to utilize these resources.
=] 28

A R E AL CHE 0 ATFIF A F 0 RAR R LR o

Solution
Alter headers based on the request method to enable CORS:
fRk &

2 R R R R B A 89 HTTP 4 &k ISR TR 4 3

map $request_method $cors_method {
OPTIONS 11;

GET 1;
POST 1;
default O;
}
server {
location / {
if \($cors_method ~ '1'\) {
add_header 'Access-Control-Allow-Methods' 'GET,POST,OPTIONS';
add_header 'Access-Control-Allow-Origin' '*.example.com';
add_header 'Access-Control-Allow-Headers'
"DNT,
Keep-Alive,
User-Agent,
X-Requested-With,
If-Modified-Since,
Cache-Control,
Content-Type';
}
if \($cors_method = '11'\) {
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain; charset=UTF-8';
add_header 'Content-Length' 0;
204,
}
}
}

There’s a lot going on in this example, which has been condensed by
using a map to group the GET and POST methods together. The
OPTIONS request method returns information called a preflight
request to the client about this server’s CORS rules. OPTIONS, GET,

and POST methods are allowed under CORS. Setting the AccessControl-Allow-Origin
header allows for content being served from

this server to also be used on pages of origins that match this header.
The preflight request can be cached on the client for 1,728,000 sec-

onds, or 20 days.

NRBlEERS RE » A&t map #8549 GET #2 POST # K9 AR —4 -
The OPTIONS request method returns information called a preflight
request to the client about this server’'s CORS rules ° £ & & ¥ GET »
POST ~ OPTIONS -+ K4k A9 ¥ 335 1] % /% ° Access-Controll-Allow-Origin
HESKRE AT H RS B FRGIBE » BFE P HRE LB E RS
M et o W] FT 297 | AR 4 & R o The preflight request can be cached on

the client for 1,728,000 seconds, or 20 days.

Discussion

Resources such as JavaScript make cross-origin resource requests
when the resource they’re requesting is of a domain other than its
own origin. When a request is considered cross origin, the browser
is required to obey CORS rules. The browser will not use the
resource if it does not have headers that specifically allow its use. To
allow our resources to be used by other subdomains, we have to set
the CORS headers, which can be done with the add_header direc-
tive. If the request is a GET, HEAD, or POST with standard content
type, and the request does not have special headers, the browser will
make the request and only check for origin. Other request methods
will cause the browser to make the preflight request to check the
terms of the server to which it will obey for that resource. If you do
not set these headers appropriately, the browser will give an error

when trying to utilize that resource.
s

Gk R FRFB T ML » s~ £ —AI5RE95 K » Hde JavaScrpt

HRECBEN TR ABHFER e BB FR~ 4 » 2l KB MLMEF

P53 3R 2 F(CORS) AN » SLBf &) bt AT 4 5] A XI5 3%69 R Fh3k o
e 3] 45T 89 R VFAE R JERLJR R A9 HTTP 74 &Sk o 4 R T34 18] 4895 35 3%

1% R R &ATE BAL A add_header 46 41% & #5289 CORS 4 &k o w3 »

— /A~ HTTP & K& 47449 GET ~ POST & HEAD 4 K B K% B 4% 697 &% »
2 5 3 e 2 R An IR IR G #4748 W] o Other request methods

will cause the browser to make the preflight request to check the

terms of the server to which it will obey for that resource. %= % % &

I A T AF R Bk BB > B B A RIISIR R M a4k
2 JR] 95 3% 5 R, o

R R A

[[*#]nginx map(ngx_http_map_module)](https://www.jianshu.com/p/6dea80baba9b\

https://www.jianshu.com/p/6dea80baba9b%29\

CHAPTER 12 Limiting Use

12.0 Introduction

Limiting use or abuse of your system can be important for throttling

heavy users or stopping attacks. NGINX has multiple modules built

in to help control the use of your applications. This chapter focuses

on limiting use and abuse, the number of connections, the rate at

which requests are served, and the amount of bandwidth used. It's

important to differentiate between connections and requests: con-

nections (TCP connections) are the transport layer on which

requests are made and therefore are not the same thing. A browser

may open multiple connections to a server to make multiple

requests. However, in HTTP/1 and HTTP/1.1, requests can only be

made one at a time on a single connection; whereas in HTTP/2,

multiple requests can be made in parallel over a single TCP connec-

tion. This chapter will help you restrict usage of your service and

mitigate abuse.

MRl 42 4] 69 632 4% A 24 T IR % 35 sk BHAE 45 A 2R B & B R o NGINX

MR% 35 M E S AIRAIER LR o KRFFRAMAF 7 FIEIHER - F Rk 2 He

L IRF F AR o B TR R 5 2 L #E 4 (connections) #» 1 K(requests)

EH(TCP) ZLTHMENW L —ANHTTP#HR& A £ — A& FTL

CINATRRER - R REHGMEEIRAG T LAFATF S ANEHE > IHETHU

FlEf R A% ANF R o Kdw s HTTP/A A= HTTP/1.1 il » Bl — B Al fn g b 3 —
H o B HTTP/2 RABCRRA] » XHFFNAES NEH - ATKkFE

Aa & FRA M » EI IR E 693248 H -

2.12 5 19 FR 4]

72

CHAPTER 12 Limiting Use

12.0 Introduction

Limiting use or abuse of your system can be important for throttling

heavy users or stopping attacks. NGINX has multiple modules built

in to help control the use of your applications. This chapter focuses

on limiting use and abuse, the number of connections, the rate at

which requests are served, and the amount of bandwidth used. It's

important to differentiate between connections and requests: con-

nections (TCP connections) are the transport layer on which

requests are made and therefore are not the same thing. A browser

may open multiple connections to a server to make multiple

requests. However, in HTTP/1 and HTTP/1.1, requests can only be

made one at a time on a single connection; whereas in HTTP/2,

multiple requests can be made in parallel over a single TCP connec-

tion. This chapter will help you restrict usage of your service and

mitigate abuse.

MRl 42 4] 69 632 4% A 24 T IR % 35 sk BHAE 45 A 2R B & B R o NGINX

MR% 35 M E S AIRAIER LR o KRFFRAMAF 7 FIEIHER - F Rk 2 He

L IRF F AR o B TR R 5 2 L #E 4 (connections) #» 1 K(requests)

EH(TCP) ZLTHMENW L —ANHTTP#HR& A £ — A& FTL

CINATRRER - R REHGMEEIRAG T LAFATF S ANEHE > IHETHU

FlEf R A% ANF R o Kdw s HTTP/A A= HTTP/1.1 il » Bl — B Al fn g b 3 —
H o B HTTP/2 RABCRRA] » XHFFNAES NEH - ATKkFE

Aa & FRA M » EI IR E 693248 H -

2.12.0 %

74

12.1 Limiting Connections | & # X IR %

Problem

You need to limit the number of connections based on a predefined

key, such as the client’s IP address.

] %

ETFLTHRAMN4 P 3t » 2R FREES o

Solution

Construct a shared memory zone to hold connection metrics, and

use the limit_conn directive to limit open connections:

http {
_conn_zone $binary_remote_addr zone=limitbyaddr:10m;
_conn_status 429;
server {
_conn limitbyaddr 40;
}
}

This configuration creates a shared memory zone named limitbyaddr.
The predefined key used is the client’s IP address in binary

form. The size of the shared memory zone is set to 10 mega-

bytes. The limit_conn directive takes two parameters: a
limit_conn_zone name, and the number of connections allowed.

The limit_conn_status sets the response when the connections are

limited to a status of 429, indicating too many

requests. The limit_conn and limit_conn_status directives are

valid in the HTTP, server, and location context.
f k7 &
1% A limit_conn_zone &4 M A B AT EHE R ABF R X s R »

1% R limit_conn 38 41% & X F 94

http {
_conn_zone $binary_remote_addr zone=limitbyaddr:16m;
_conn_status 429;
server {
_conn limitbyaddr 40;
}
}

Fo B PRIET —AML Y limitbyaddr 9 B ZE 4 10M 89 EZ A4 -
L M B Pk =B 89 |P HAE o limit_conn 38 4480 A AN A gk
— A limit_conn_zone 4|2 69 % # limitbyaddr » Fo X 4 89 3% 3 4
40 - limit_conn_status 54~ L T % & 4 A2 L 40 B 697h 2R &
75 o limit_conn #= limit_conn_status 45 4 4£4% & HTTP ~ server #=

location E T U+ 14¢ A °

Discussion

Limiting the number of connections based on a key can be used to
defend against abuse and share your resources fairly across all your
clients. It is important to be cautious of your predefined key. Using

an |IP address, as we are in the previous example, could be danger-
ous if many users are on the same network that originates from the
same IP, such as when behind a Network Address Translation (NAT).

The entire group of clients will be limited. The limit_conn_zone

directive is only valid in the HTTP context. You can utilize any
number of variables available to NGINX within the HTTP context

in order to build a string on which to limit by. Utilizing a variable
that can identify the user at the application level, such as a session
cookie, may be a cleaner solution depending on the use case. The
limit_conn_status defaults to 503, service unavailable. You may
find it preferable to use a 429, as the service is available, and 500-
level responses indicate server error whereas 400-level responses

indicate client error.

it

B 304E Rl E RIS > TURERS B FRMENT P RGLER - G X
BAETEXL—AEGEGGHEL o AP AT IP A G 4L T A —A
ek AA > —EA RS AP AR —ML& GRS 24 RA]% PR
B BT A R PRy MR R 0 AR R A o limit_conn_zone 1/ http E F X ¥
TR T AL A BTA B NGINX £ 2 RAERFAEL o AL AARBRAN P 28
49 % & 4= cookie * A A| T &A% A 3424 2 & limit_conn_status BKik
KA E 503 RE AT o GlFFAER 429 AA MRS AT » @ 500 %

by om oz 25 & T IR 5 35 R 4R AR 0 1 400 RAGCA S R R E P in kiR o

2.2 Limiting Rate ki

Problem

You need to limit the rate of requests by predefined key, such as the

client’s IP address.

] %

RYE LI 23 A P ik R#ATIRE » B A P IP ea #ATIR R o

Solution

Utilize the rate-limiting module to limit the rate of requests:

http {
_req_zone $binary_remote_addr zone=limitbyaddr:10m rate=1r/s;
_req_status 429;
server {
_req zone=limitbyaddr burst=10 nodelay;
}
}

This example configuration creates a shared memory zone named
limitbyaddr. The predefined key used is the client’s IP address in
binary form. The size of the shared memory zone is set to 10 mega-
bytes. The zone sets the rate with a keyword argument. The
limit_req directive takes two optional keyword arguments: zone

and burst. zone is required to instruct the directive on which shared
memory request limit zone to use. When the request rate for a given
zone is exceeded, requests are delayed until their maximum burst

size is reached, denoted by the burst keyword argument. The burst

keyword argument defaults to zero. limit_req also takes a third
optional parameter, nodelay. This parameter enables the client to
use its burst without delay before being limited. limit_req_status
sets the status returned to the client to a particular HTTP status
code; the default is 503. limit_req_status and limit_req are valid
in the context of HTTP, server, and location. limit_req_zone is

only valid in the HTTP context.

fR kTR

AR rate-limiting B2 3k 92 9 x5 R IR 3% -

http {
_reqg_zone $binary_remote_addr zone=limitbyaddr:10m rate=1r/s;
_req_status 429;
server {
_req zone=limitbyaddr burst=10 nodelay;
}
}

FHF > RIET —M10M B4 % F 695 A limitbyaddr 89 & F R 4 > 5H4E A
Z#H G F Pk P e A4S - limit_req_zone E% E T 5 MK o

limit_req #§4 £ & 82 A AT 44 : zone #2 burst ° zone S G RP A
limit_req_zone &4 ¥ zone A% X L G EIA L o 50 Fih KAB H Rk

REN > BEGFERESHEMEE burst LG E TR > BELAR BF KRR EZF
RE S TR 429 REMLE P 5 o burst K EHKINEA 0 ° sbsb > limit_req
EA F =%k nodelay : B 85 ik R R BRI AL 32 rate + burst N A RETEES o
limit_req_status 548 T% B A ik F1F Rea w65 P 3% 69 R & » Bik& 503 °
Tl FLE A 429 ° limit_req_status #= limit_req & & F T HTTP -~ server #»

location LT T limit_req_zone 4§ & x &£ HTTP LT L F4& A o

Discussion

The rate-limiting module is very powerful in protecting against abu-
sive rapid requests while still providing a quality service to every-
one. There are many reasons to limit rate of request, one being
security. You can deny a brute force attack by putting a very strict
limit on your login page. You can disable the plans of malicious
users that might try to deny service to your application or to waste
resources by setting a sane limit on all requests. The configuration

of the rate-limit module is much like the preceding connectionlimiting module described in
Recipe 12.1, and much of the same

concerns apply. The rate at which requests are limited can be done
in requests per second or requests per minute. When the rate limit is
hit, the incident is logged. There’s a directive not in the example:
limit_req_log_level, which defaults to error, but can be set to

info, notice, or warn.

43

rate-limiting &£ B P IEFAM » BT EBRELGHFR > AHENSA P

REZREOME - R ARRBERAE S TG L—RATZLFTOEE - wEBER

Mm% & A IR AEH » BRERN S E o wRBEAWREN P FHIRR A THE

SFHEMN P RFAERRERBER TRE R TR o rate-limiting B3R A & £
=0 P AR O IRF] E AR IR o RIREE T VUMRIEB A RIR » AT IRIE 4P 17

IRIE o H R POk Rk RIRR FE » FRBMCARET o B TA KWL EA

Bl 45 & limit_req_log_level 45 4% & ik B % %] > €HKINEA error

%R > B3R T L% E A info ~ notice X warn & %)

2.12.2 IRl EAE T 8k &

[Nginx T limit_req#% 3kburst$ 248 1% 2m A2 47]
(http://blog.csdn.net/hellow__ world/article/details/7865804 1\

81

http://blog.csdn.net/hellow__world/article/details/78658041%29\

12.3 Limiting Bandwidth &% # %

Problem

You need to limit download bandwidths per client for your assets.

7] %

FERIBE P b BTN TRER -

Solution

Utilize NGINX’s limit_rate and limit_rate _after directives to

limit the rate of response to a client:

location /download/ {
_rate_after 10m;
_rate 1m;

The configuration of this location block specifies that for URIs with
the prefix download, the rate at which the response will be served to
the client will be limited after 10 megabytes to a rate of 1 megabyte
per second. The bandwidth limit is per connection, so you may want
to institute a connection limit as well as a bandwidth limit where

applicable.
fRkr %
1% B NGINX IR % % 89 limit_rate #= limit_rate_after 3§42 L& P 3% °h

location /download/ {
_rate_after 10m;
_rate 1m;

i

i

JEa

location 3= % 45 4% & T 3t T IL & /download/ #1489 URI 5K » % & P58 T #4484
B AOMUAE » A ETHRERFPA 1M AR o T 1ZF 5T R) 88U A 4T 2 £ A E

¥emZ o Bf oo TR IR F & R B A1k E B R A0 50 Rw 2 ILT IR o

Discussion

Limiting the bandwidth for particular connections enables NGINX
to share its upload bandwidth across all of the clients in a manner
you specify. These two directives do it all: limit_rate_after and
limit_rate. The limit_rate_after directive can be set in almost

any context: http, server, location, and if when the if is within a

location. The limit_rate directive is applicable in the same contexts as limit_rate_after;
however, it can alternatively be set by

setting a variable named $limit_rate. The limit_rate_after

directive specifies that the connection should not be rate limited
until after a specified amount of data has been transferred. The
limit_rate directive specifies the rate limit for a given context in
bytes per second by default. However, you can specify m for mega-
bytes or g for gigabytes. Both directives default to a value of 0. The
value 0 means not to limit download rates at all. This module allows

you to programmatically change the rate limit of clients.

it

limit_rate_after #= limit_rate 4 NGINX #4952 848 € 89 7 XA A
P EEFH EAEFT o limit_rate #= limit_rate_after 45 4T /£ JL-F
BT A 8 LT P42 A > 4= http ~ server ~ location ~ location 154~/ &) if
g4 i limit_rate 48 4% T LA L $limit_rate TER X EF T ©

limit_rate_after 842 TEZ PR RA S VAERE » ¥ L AFLRA DA o

limit_rate 48 &K IANRZ LA A F % (byte) *» BT AR EA m (bF¥) F
g(FFF)e RAEXBALOKIMEAZ 0 &7 st THATEFMIRA o 59 »

AR ARG Ty K3 B P o TAATIRIR o

5% At

[Nginxr 5t 42 #1](https://huoding.com/2015/03/20/423\

https://huoding.com/2015/03/20/423%29\

13.0 Introduction

The internet can be a scary place, but it doesn’t have to be. Encryp-
tion for information in transit has become easier and more attaina-
ble in that signed certificates have become less costly with the advent
of Let’'s Encrypt and Amazon Web Services. Both offer free certifi-
cates with limited usage. With free signed certificates, there’s little
standing in the way of protecting sensitive information. While not

all certificates are created equal, any protection is better than none.

In this chapter, we discuss how to secure information between

NGINX and the client, as well as NGINX and upstream services.

13.0 /48

BRERELZBEFMINE AR - 125 3F R A MR % » A Let's ,mwE A Amazon
Web ME 48 3L » AR PERAIEENELHFENES » WEEHEI o XAHA

R S AT AR % 69 0E 5 T IR R AR o & RIEH o LA P HEAS BRP TR/
A BARTERT o RIFJEPTA 091E i £ R BRAS B G RE A AR AR R 8 > R B A &b
TR & o REIK 23 E Pk NGINX 245 % 2 NGINX R % % 5 K IR % (upstream

services)#J B m B MR k7T R ©

13.0 Introduction

The internet can be a scary place, but it doesn’t have to be. Encryp-
tion for information in transit has become easier and more attaina-
ble in that signed certificates have become less costly with the advent
of Let’'s Encrypt and Amazon Web Services. Both offer free certifi-
cates with limited usage. With free signed certificates, there’s little
standing in the way of protecting sensitive information. While not

all certificates are created equal, any protection is better than none.

In this chapter, we discuss how to secure information between

NGINX and the client, as well as NGINX and upstream services.

13.0 /48

BRERELZBEFMINE AR - 125 3F R A MR % » A Let's ,mwE A Amazon
Web ME 48 3L » AR PERAIEENELHFENES » WEEHEI o XAHA

R S AT AR % 69 0E 5 T IR R AR o & RIEH o LA P HEAS BRP TR/
A BARTERT o RIFJEPTA 091E i £ R BRAS B G RE A AR AR R 8 > R B A &b
TR & o REIK 23 E Pk NGINX 245 % 2 NGINX R % % 5 K IR % (upstream

services)#J B m B MR k7T R ©

13.1 Client-Side Encryption % F 3% i %

Problem

You need to encrypt traffic between your NGINX server and the cli-

ent.

] %

B Pt NGINX IR % £ Z 8 6915 REIE T Z B2 IE o

Solution

Utilize one of the SSL modules, such as the ngx_http_ssl_module

or ngx_stream_ssl_module to encrypt traffic:

http {

\

server {
listen 8433 ssl;
ss1_protocols TLSv1.2;
ss1_ciphers HIGH:!aNULL: !MD5;
ssl_certificate /usr/ /nginx/conf/cert.pem;
ssl_certificate_key /usr/ /nginx/conf/cert.key;
ss1_session_cache shared:SSL:160m;
ss1_session_timeout 10m;

This configuration sets up a server to listen on a port encrypted with
SSL, 8443. The server accepts the SSL protocol version TLSv1.2. The
SSL certificate and key locations are disclosed to the server for use.
The server is instructed to use the highest strength offered by the
client while restricting a few that are insecure. The SSL session cache
and timeout allow for workers to cache and store session parameters

for a given amount of time. There are many other session cache

options that can help with performance or security of all types of use
cases. Session cache options can be used in conjunction. However,
specifying one without the default will turn off that default, built-in

session cache.

S
J& B ngx_http_ssl_module 3 ngx_stream_ss|_module £ ¥ 2 —# NGINX SSL

2 3 2t B Ve AT m

http {

\

server {
listen 8433 ssl;
ss1_protocols TLSv1.2;
ss1_ciphers HIGH:!aNULL: !MD5;
ssl_certificate /usr/ /nginx/conf/cert.pem;
ssl_certificate_key /usr/ /nginx/conf/cert.key;
ss1_session_cache shared:SSL:10m;
ss1_session_timeout 10m;

] £ server k& 454 F % E N U7 B A ssl % 69 8843 sm v o 4% Al 69 ss| HriL

A TLS1.2 BRA o M4 B A% 7] SSLEH A FA A RARIR o B IRFBREP %
RERA K5 %A B $IE - ssl_sesson_cache #» ssl_session_timeout 454~ T
REREHBEAGER R BREAMASI A L5 RAXGHESL > T
AT #RIHaF 2 2 o However,specifying one without the default will turn

off that default, built-in session cache.

Discussion

Secure transport layers are the most common way of encrypting
information in transit. At the time of writing, the Transport Layer
Security protocol (TLS) is the default over the Secure Socket Layer

(SSL) protocol. That's because versions 1 through 3 of SSL are now

considered insecure. While the protocol name may be different, TLS
still establishes a secure socket layer. NGINX enables your service to
protect information between you and your clients, which in turn
protects the client and your business. When using a signed certifi-
cate, you need to concatenate the certificate with the certificate
authority chain. When you concatenate your certificate and the

chain, your certificate should be above the chain in the file. If your
certificate authority has provided many files in the chain, it is also
able to provide the order in which they are layered. The SSL session
cache enhances performance by not having to negotiate for SSL/TLS

versions and ciphers.

2R A B RIE S E A F & o AR > 552 %A IL(TSL)A
A BT B WIL(SSL)H BRI 0 B A LIS 1.0 B 3.0 A SSL
AR A TR A o RERAWIL L FRA PR » 12 K38 TSL W iLiE & SSL
CAG R L B A TN E— AN L2 ERE - NGINX R % SR REER S 5F P %
Z M E G RAESER RIEL S5 AP HBLAE AR ELGE PRI o F R E
i 5k 5 AR KA R AL R o TE B AR R AU BAS B B o AR A TE s R U AF4E
oo do R A UE BRI EE P IREET F S UM CRREBREEN B IR o

SSL &% 4% A M AL T R F MR AT B fr $ 4B e % 77 X A9 SSL/ TLS Wit 23 o

Also See

Mozilla Server Side TLS Page
Mozilla SSL Configuration Generator

Test your SSL Configuration with SSL Labs SSL Test

2131 B P %%

90

3.2 Upstream Encryption

Problem

You need to encrypt traffic between NGINX and the upstream ser-
vice and set specific negotiation rules for compliance regulations or

if the upstream is outside of your secured network.

] &%

&% £ NGINX 5 upstream KR % 5 Z R &I BRI Ay 22 22 A3l A o

Solution

Use the SSL directives of the HTTP proxy module to specify SSL

rules:

location / {
proxy_pass https://upstream.example.com;
proxy_ssl_verify on;
proxy_ssl_verify_depth 2;
proxy_ssl_protocols TLSv1.2;

These proxy directives set specific SSL rules for NGINX to obey. The
configured directives ensure that NGINX verifies that the certificate
and chain on the upstream service is valid up to two certificates
deep. The proxy_ssl_protocols directive specifies that NGINX will
only use TLS version 1.2. By default NGINX does not verify

upstream certificates and accepts all TLS versions.
i S

1% R http 3k 89 ssl 45 &4 & B4Rk 89 SSL A 13 H

location / {
proxy_pass https://upstream.example.com;
proxy_ssl_verify on;
proxy_ssl_verify_depth 2;
proxy_ssl_protocols TLSv1.2;

7B FERET NGINX 5RER S ZHA1Z69 SSLAM - AL AR2eEmikk)
it > HI NGINX 5 REIR % B R 6918 AR RE R E A 2 & ° proxy_ssl_protocols
AR TREARA TSL 1.2 BAIL » EHEKIEAE T 2RI IES » H T lE A ATA

MR TLS i o

Discussion

The configuration directives for the HTTP proxy module are vast,
and if you need to encrypt upstream traffic, you should at least turn
on verification. You can proxy over HTTPS simply by changing the
protocol on the value passed to the proxy_pass directive. However,
this does not validate the upstream certificate. Other directives
available, such as proxy_ssl_certificate and proxy_ssl_certifi
cate_key, allow you to lock down upstream encryption for
enhanced security. You can also specify proxy_ssl_crl or a certificate
revocation list, which lists certificates that are no longer consid-
ered valid. These SSL proxy directives help harden your system’s
communication channels within your own network or across the

public internet.

43

HTTP proxy #6936 4% % » WwRERZBARXEERAR 2T LTEZABREARE o
Ik o KAVE T At proxy pass 84X E WL 0 kEIH HTTPS 454 o il » XA 7

AP 2RI S B 691E R ITRE - L Ei9484 > 4= proxy_ssl_certificate F#

proxy_ssl_certificate_key 464 » Jl Tl E M AXERFEHFRBIEH B F o AL
A proxy_ssl_crl = £BCE | R E 0 AT I HEFIAEGES o X proxy

B3R 69 SSL 15 4 AL 9% Bh AR M 7 22 4 69 R 3R IR 5 3845 Ao B P 384 ©

Practical Security Tips

20.0 Introduction

Security is done in layers, and much like an onion, there must be
multiple layers to your security model for it to be truly hardened. In
Part Il of this book, we’ve gone through many different ways to
secure your web applications with NGINX and NGINX Plus. Many
of these security methods can be used in conjunction to help harden
security. The following are a few more practical security tips to
ensure your users are using HTTPS and to tell NGINX to satisfy one

or more security methods.

20.0 ™4

BN ARBERYE > FTY

N
Ay
&

AR EBIRIERRG)ERKIET
ERBO Ty CENBT RS LRSI R - RTOHTEFT T
RS ThBLEGHES « EZAFT > FUZBAREL EERS

89 HTTPS t#hitA= NGINX IR 5 & 89 7 ik o

Practical Security Tips

20.0 Introduction

Security is done in layers, and much like an onion, there must be
multiple layers to your security model for it to be truly hardened. In
Part Il of this book, we’ve gone through many different ways to
secure your web applications with NGINX and NGINX Plus. Many
of these security methods can be used in conjunction to help harden
security. The following are a few more practical security tips to
ensure your users are using HTTPS and to tell NGINX to satisfy one

or more security methods.

20.0 ™4

EMNGRARBERYEN > IAREREFRZRIEFR G EZRMIBTIRRT R
EABHFH R CENBT RS LLERET R LPHRSTT PR RS
RRBM T 2GRN « £RXIAFTF » BNZERARLBAL » HEHE

89 HTTPS t#hitA= NGINX IR 5 & 89 7 ik o

20.1 HTTPS Redirects = < =) £ HTTPS # 1%

Problem

You need to redirect unencrypted requests to HTTPS.

-—
03

284

FEI5R ik R HTTP it £ 41 £ HTTPS Hrit ©

Solution

Use a rewrite to send all HTTP traffic to HTTPS:

server {
listen 80 default_server;
listen \[::\]:80 default_server;
server_name _;
301 https://$host$request_uri;

This configuration listens on port 80 as the default server for both
IPv4 and IPv6 and for any hostname. The return statement returns
a 301 permanent redirect to the HTTPS server at the same host and

request URI.
fRk &
R 48 A rewrite €504 AT HTTP 5 R €2 @ E HTTPS:

server {
listen 80 default_server;
listen \[::\]:80 default_server;
server_name _;
301 https://$host$request_uri;

server 32 B354 8 E T AT U ATA IPv4 #= IPv6 Huik &9 80 5% T » return
B 1E KA ER URI L@ 24 FERE 69 HTTPS MR % & A & 301 K A4

BB P e

Discussion

It's important to always redirect to HTTPS where appropriate. You
may find that you do not need to redirect all requests but only those
with sensitive information being passed between client and server.

In that case, you may want to put the return statement in particular

locations only, such as /login.
2w

ELBEHHFTHRHTITP HRELHE HTTPS H R A AL AR R ESE - A8 >
ENAFFEEHBBTAGA P HRAETHEHTTPS RS E > AR FHELA P

BREIBEHFERELHEHTTPS IREBP T » tbhe A P B FIR % o

20.3 HTTP Strict Transport Security

Problem

You need to instruct browsers to never send requests over HTTP.

7] %

FRE IR BT EAE R HTTP R %% K

Solution

Use the HTTP Strict Transport Security (HSTS) enhancement by

setting the Strict-Transport-Security header:

add_header Strict-Transport-Security max-age=31536000;

This configuration sets the Strict-Transport-Security header to a
max age of a year. This will instruct the browser to always do an
internal redirect when HTTP requests are attempted to this domain,
so that all requests will be made over HTTPS.

Y

i it7% & Strict-Transport-Security 7 & 5k 715 & » & A HTTP Strict

Transport Security % » %4= 3| ¥ £ & L& HTTP % K-
add_header Strict-Transport-Security max-age=31536000;
& E s KA1 Strict-Transport-Security 4 &k A A% EH 1 5 &

RAE AP Xe—AHTTP # R > 2| R ZEARB—A TG ¥ITH

1% R EHEA T HTTPS #hii7 [] °

Discussion

For some applications a single HTTP request trapped by a man in
the middle attack could be the end of the company. If a form post
containing sensitive information is sent over HTTP, the HTTPS

redirect from NGINX won’t save you; the damage is done. This optin security enhancement
informs the browser to never make an

HTTP request, therefore the request is never sent unencrypted.

16

BARAPIERMNERS S AR AT HTTPS T @A » 123 K B HRA L HTTP
wR > XTREMP AASE » FHA P BB EFE - ZE HTTPS X QAL
FRIE SR 0 % A o H 42 A Strict-Transport-Security kB > &) % B T &K %

A o HTTP % £ » R K289 % HTTPS K » A R tyiE Ri51H o

Also See

RFC-6797 HTTP Strict Transport Security
OWASP HSTS Cheat Sheet

[MDN HTTP Strict Transport Security](https://developer.mozilla.org/zh-
CN/docs/Security/HTTP_Strict_Transport_Security\

https://developer.mozilla.org/zh-CN/docs/Security/HTTP_Strict_Transport_Security%29\

Part lll: Deployment and Operations

This is the third and final part of the NGINX Cookbook. This part
will focus on deployment and operations of NGINX and NGINX
Plus, the licensed version of the server. Throughout this part, you
will learn about deploying NGINX to Amazon Web Services, Micro-
soft Azure, and Google Cloud Compute, as well as working with
NGINX in Docker containers. This part will dig into using configu-
ration management to provision NGINX servers with tools such as
Puppet, Chef, Ansible, and SaltStack. It will also get into automating
with NGINX Plus through the NGINX Plus API for on-the-fly
reconfiguration and using Consul for service discovery and configu-
ration templating. We’'ll use an NGINX module to conduct A/B test-
ing and acceptance during deployments. Other topics covered are
using NGINX’s GeolP module to discover the geographical origin of
our clients, including it in our logs, and using it in our logic. You'll
learn how to format access logs and set log levels of error logging for
debugging. Through a deep look at performance, this part will pro-
vide you with practical tips for optimizing your NGINX configura-
tion to serve more requests faster. It will help you install, monitor,

and maintain the NGINX application delivery platform.

29.0 Introduction

Logging is the basis of understanding your application. With

NGINX you have great control over logging information meaning-
ful to you and your application. NGINX allows you to divide access
logs into different files and formats for different contexts and to
change the log level of error logging to get a deeper understanding
of what’s happening. The capability of streaming logs to a central-
ized server comes innately to NGINX through its Syslog logging
capabilities. In this chapter, we’ll discuss access and error logs,
streaming over the Syslog protocol, and tracing requests end to end

with request identifiers generated by NGINX.

29.0 /-4

BE&EieEkAEME ARG E o NGINX IR ZRETIEN A R H £ 0 ik
K2 89 B & RS AT AR G F R B4 o NGINX 9% 1R 3E T Bl LT SLIRIT A R R 89
AEFRBTER > BRBARAEHAR EWEANNGT RS B GLZFR -
NGINX B &g k69 23R L4 A% %49 syslog B &6k o KAE » KM%
#35FEA &~ #i% B & - syslog B & Ao k¥E NGINX £ &89 B iz 231

R PpFER

30.0 Introduction

Tuning NGINX will make an artist of you. Performance tuning of

any type of server or application is always dependent on a number
of variable items, such as, but not limited to, the environment, use
case, requirements, and physical components involved. It's common
to practice bottleneck-driven tuning, meaning to test until you’ve hit
a bottleneck, determine the bottleneck, tune for limitation, and
repeat until you’ve reached your desired performance requirements.
In this chapter we’ll suggest taking measurements when perfor-
mance tuning by testing with automated tools and measuring
results. This chapter will also cover connection tuning for keeping
connections open to clients as well as upstream servers, and serving

more connections by tuning the operating system.

30.0 /~%8

#f NGINX R % & #AT AR 2L R R AL NGINX R B EAK o IR F 5 K
2 R #ATHRERLEZH AR ZRM % » 4 RRT ¢ BRIRK ~ AB ~ B R

Fotp % & F o A A L WK A AT PR AR A M KRR o F 0 MK A B &Y

ANG TR %MK B BB MR ~ A PEARIRA ~ AL - AR MK EE KB

MBI o AFE > KN F2T AHMNATERNMNRERAITHRICLE 5 T

F3) M EFRAL > URFEP GRS R ER > PRI ARER S SRMEE

%0 RS o

29.1 Confguring Access Logs

Problem

You need to configure access log formats to add embedded variables

to your request logs.

FEmE A 7 LK 8975 F B & (access log)

Solution
Configure an access log format:

http {

_format geoproxy
'"[$time_local] $remote_addr '
'$realip_remote_addr $remote_user '

'$request_method $server_protocol '
'$scheme $server_name $uri $status '
'$request_time $body bytes_sent '
'$geoip_city_country_code3 $geoip_region '
'"$geoip_city" $http_x_forwarded_for '

'$upstream_status $upstream_response_time
""$http_referer" "$http_user_agent"';

This log format configuration is named geoproxy and uses a num-
ber of embedded variables to demonstrate the power of NGINX log-
ging. This configuration shows the local time on the server when the
request was made, the IP address that opened the connection, and
the IP of the client as NGINX understands it per geoip_proxy or
realip_header instructions. $remote_user shows the username of

the user authenticated by basic authentication, followed by the

request method and protocol, as well as the scheme, such as HTTP
or HTTPS. The server name match is logged as well as the request
URI and the return status code. Statistics logged include the pro-
cessing time in milliseconds and the size of the body sent to the cli-
ent. Information about the country, region, and city are logged. The
HTTP header X-Forwarded-For is included to show if the request is
being forwarded by another proxy. The upstream module enables
some embedded variables that we've used that show the status
returned from the upstream server and how long the upstream
request takes to return. Lastly we’ve logged some information about
where the client was referred from and what browser the client is
using. The log_format directive is only valid within the HTTP con-

text.

N
@6%1‘7}')‘EJ H l{‘*%i& .

http {
_format geoproxy

'"[$time_local] $remote_addr '
'$realip_remote_addr $remote_user '
'$request_method $server_protocol '
'$scheme $server_name $uri $status '
'$request_time $body_bytes_sent '
'$geoip_city_country_code3 $geoip_region '
'"$geoip_city" $http_x_forwarded_for '
'"$upstream_status $upstream_response_time '
""$http_referer" "$http_user_agent"';

&R &R ERG L H geoproxy * EAE A % NGINX £ %% & NGINX B &t &
DR o BT R F@ARERERAFENTEHAARS L 3P LAed Rt > 212

F IR % 2 ot 18] ($time_local) ~ A1 -T NGINX 4 2 geoip_proxy # realip_header

44T A E Y IP A K P 5% IP 3k 5 $remote_user 1A% il i K AR ALE A
P& AR X JG1e % HTTP % K 7 % ($request_method) ~ ¥ ($server_protocol)
F2 HTTP 7 i%($scheme : http =k https) ; % K& A R % & & #r($server_name)
~IE K8 URI Areb R & o TR AR &I » A — AT RAIE ¢ BHF R
2k 32 89 Z Ay % i 1] ($request_time) ~ IR % 2 o m 69 £ 38 3k K I~ ($body_bytes_sent) ©
eoh s B Pk AT R B R ($Sgeoip_city_country_code3) ~ # X ($geoip_region),
15 &($geoip_city)Lk ie FL£ A o T & $http_x_forwarded_for
ATk h A e XRERSE R Ltk K89 X-Forwarded-For 3k 7% & o upstream #£
Hep — e FIE AL EE A ED MAREIRE B 690k &K A4 ($upstream_status)
Fa R % % 4 2 8 18] (Supstream_response_time) © 14 K k Ik ($http_referer)= Al
P X ($http_user_agent) LA # 2T A B EL o N L@TLE % NGINX B
ERFHREAFFBRIZEN > FEATE LB ERK KX log_format 15
SAER T http REAELA » L— A FREZRE °
This log configuration renders a log entry that looks like the follow-
ing:

[25/Nov/2016:16:20:42 +0000] 10.0.1.16 192.168.0.122 Derek

GET HTTP/1.1 http www.example.com / 200 0.001 370 USA MI

"Ann Arbor" - 200 ©.001 "-" "curl/7.47.0"
To use this log format, use the access_log directive, providing a

logfile path and the format name geoproxy as parameters:

server {
access_ /var/log/nginx/access.log geoproxy;

The access_log directive takes a logfile path and the format name
as parameters. This directive is valid in many contexts and in each
context can have a different log path and or log format.

EHFEAND B RZERRMUT @R

[25/Nov/2016:16:20:42 +0000] 10.0.1.16 192.168.0.122 Derek
GET HTTP/1.1 http www.example.com / 200 0.001 370 USA MI
"Ann Arbor" - 200 0.001 "-" "curl/7.47.0"

o REFRMGEMZIANADERE » FE4% 512 access_log 44 » access_log

W/EAER—IBEE ZAE R ERELEA S

server {
access_ /var/ /nginx/access.log geoproxy;

access _log R £ M ET XA » BEALTXFTAELEZANBER F

F2 B 4i‘ia7?{7}g‘5\4 °

Discussion

The log module in NGINX allows you to configure log formats for
many different scenarios to log to numerous logfiles as you see fit.
You may find it useful to configure a different log format for each
context, where you use different modules and employ those mod-
ules’ embedded variables, or a single, catchall format that provides
all necessary information you could ever want. It's also possible to
structure format to log in JSON or XML. These logs will aid you in
understanding your traffic patterns, client usage, who your clients
are, and where they’re coming from. Access logs can also aid you in
finding lag in responses and issues with upstream servers or particu-
lar URIs. Access logs can be used to parse and play back traffic pat-
terns in test environments to mimic real user interaction. There’s
limitless possibility to logs when troubleshooting, debugging, or

analyzing your application or market.

&b

NGINX P& B EBEAFEA TR HFERE D EEN » MEEE TR B EH -
LEFEFERY » AR ETIREARNGDELEFTAM > CFOBEARTAMNE
B8 WITUAFRE M IE KA A LBAZE o Tfadmsk s BERNERT XFA
AL 7612 5k JSON & X fe XML #6 X238 - SR ENGINX B EAB THET RS EZARE -
B A E AP sk RFE L It R BERTUF B RS LFERS
REAFZ uri Aa Kby A B s TRk R BEREAR > € TUAT
PIREHEN > BINEFGR P REZYF o BELABEH R ~ AKX ~ 2 A A

FREFAERRRT KR o

29.2 Confguring Error Logs

Problem

You need to configure error logging to better understand issues with

your NGINX server.

] %

FL2FEANGETALNGINX JRE R R » AR B4 2R & o

Solution
Use the error_log directive to define the log path and the log level:

error_ /var/ /nginx/error.log warn;

The error_log directive requires a path; however, the log level is
optional. This directive is valid in every context except for if state-
ments. The log levels available are debug, info, notice, warn, error,
crit, alert, or emerg. The order in which these log levels were
introduced is also the order of severity from least to most. The
debug log level is only available if NGINX is configured with the --

with-debug flag.
fRR TR
1 M error_log #8547 L2 A& B FAREHEREHF R

error_ /var/ /nginx/error.log warn;

error_log ¥4 B B F 2 — MLkt B ER FA—ATHGHIRFRLN o

M if 46498 5 error_log 384 REEMTA G ETXPAEM o 42 B EF RS :

debug ~ info ~ notice ~ warn ~ error ~ crit ~ alert 7= emerg ° % 8 B &
FHR PR ARFRADBN RS EGDEFRASF o F22E9 2 debug B &

& %F NGINX R % &8 > # L —-with-debug 4718 F A 4£ H o

Discussion

The error log is the first place to look when configuration files are
not working correctly. The log is also a great place to find errors
produced by application servers like FastCGIl. You can use the error
log to debug connections down to the worker, memory allocation,
client IP, and server. The error log cannot be formatted. However, it

follows a specific format of date, followed by the level, then the mes-

sage.

2w

HREEMEERELEN > AAFTREABZDEARLEA - 3K #ixB &

AT R R R % % (4= FastCGl R 4)89 4] & o i 44i% B & » &A1 T XA # X worder
REZMR S AGTERFP% PR AR EFFM - %8 EBXNERAT XL

=t
HFARLAERX 2L BRFREEANE ~ BEF R LIRE BFHKIE -

29.3 Forwarding to Syslog

Problem

You need to forward your logs to a Syslog listener to aggregate logs

to a centralized service.
2] 28

FHY 420 Sl syslog REIEZFEHNEFRAERS S -

Solution

Use the access_log and error_log directives to send your logs to a

Syslog listener:

error_log syslog:server=10.0.1.42 debug;
access_log syslog:server=10.0.1.42, tag=nginx, severity=info geoproxy;
The syslog parameter for the error_log and access_log directives
is followed by a colon and a number of options. These options
include the required server flag that denotes the IP, DNS name, or
Unix socket to connect to, as well as optional flags such
as facility, severity, tag, and nohostname. The server option
takes a port number, along with IP addresses or DNS names. How-
ever, it defaults to UDP 514. The facility option refers to the
facility of the log message defined as one of the 23 defined in the
RFC standard for Syslog; the default value is local7. The tag option
tags the message with a value. This value defaults to nginx.
severity defaults to info and denotes the severity of the message

being sent. The nohostname flag disables adding the hostname field

into the Syslog message header and does not take a value.
Rk %
{42 error_log #= access_log #5408t » 4 B & &K % £ syslog %77 &:

error_log syslog:server=10.0.1.42 debug;
access_log syslog:server=10.0.1.42, tag=nginx, severity=info geoproxy;
error_log #= access_log 15489 syslog % %3RG5 (:)fr — & A kR -
.45 1 bib) server AR 1B R T F ZEHEL IP ~ DNS &R K UNIX £#F ;
7T % % %A facility ~ severity ~ tag #» nohostname ° server % # 3 1#
5% T 8 |P Huak sk, DNS % 4R 5 BKiAZ UDP 514 3% v o facility 4% &
syslog # % %! (facility) » 14 % syslog RFC 47 & L8 23 MNMA F 89—/
(@todo) ° tag Ak 7 B & XA F B AR 69472 > BRI nginx o
severity % & /4 & EAE » KL info & %] B & ° nohostname %77 » %

144 hostname 3744 | syslog 9 iF B3k o

Discussion

Syslog is a standard protocol for sending log messages and collect-
ing those logs on a single server or collection of servers. Sending
logs to a centralized location helps in debugging when you’ve got
multiple instances of the same service running on multiple hosts.
This is called aggregating logs. Aggregating logs allows you to view
logs together in one place without having to jump from server to
server and mentally stitch together logdfiles by timestamp. A com-
mon log aggregation stack is ElasticSearch, Logstash, and Kibana,
also known as the ELK Stack. NGINX makes streaming these logs to
your Syslog listener easy with the access_log and error_log direc-

tives.

&b

syslog A T %GR % EXIRF EFFHT T AKER SR AR -
ESAIMEEITABIRE G S AEHI > FAELEHEd 2 EATRK
BAAREGEAE - REDEAFERE—NFTEFDE > AR LWHRFEAREE -
FRaR e A R B & SRR E — A o F LIRS B &Mk £ A ElasticSearch -
Logstash ~ Kibana #= ELK Stack ° 12 NGINX 4 & X i%£ B & 2| syslog %97 % °

Be 9% 1R 2 5 89 9% access log #= error_log 4844426 A S X E B RSB ER S

[RFC3164 - BSD Syslog#i](https://www.jianshu.com/p/8656fc85e497\

[NginxsU#%-12 % B & 2|syslog](https://oopsguy.com/2017/07/23/nginx-document-logging-to-
syslog/\

[% T syslog](http://blog.csdn.net/smstong/article/details/8919803\

[syslog](https://en.wikipedia.org/wiki/Syslog\

https://www.jianshu.com/p/8656fc85e497%29\
https://oopsguy.com/2017/07/23/nginx-document-logging-to-syslog/%29\
http://blog.csdn.net/smstong/article/details/8919803%29\
https://en.wikipedia.org/wiki/Syslog%29\

29.4 Request Tracing

Problem

You need to correlate NGINX logs with application logs to have an

end-to-end understanding of a request.

A

-—

7

FRELNGINX BEFen B L EHFFRBARAK -

Solution

Use the request identifying variable and pass it to your application

to log as well:

_format trace '$remote_addr - $remote_user [$time_local]
'"$request" $status $body_bytes_sent '
'"$http_referer" "$http_user_agent"
'""$http_x_forwarded_for" $request_id';

upstream backend {
server 10.0.0.42,

}
server {
listen 80;
add_header X-Request-ID $request_id; \
location / {
proxy_pass http://backend;
proxy_set_header X-Request-ID $request_id; \
access_ /var/ /nginx/access_trace.log trace;
}
}

In this example configuration, a log_format named trace is set up,
and the variable $request _id is used in the log. This $request _id
variable is also passed to the upstream application by use of the

proxy_set_header directive to add the request ID to a header when

making the upstream request. The request ID is also passed back to
the client through use of the add_header directive setting the

request ID in a response header.

Rk %
1 M request 1712 » HEAFRBEAF A A S L ¢

_format trace '$remote_addr - $remote_user [$time_local] '
'"$request" $status $body_bytes_sent '
'"$http_referer" "$http_user_agent" '
'""$http_x_forwarded_for" $request_id';

upstream backend {
server 10.0.0.42;

}
server {
listen 80;
add_header X-Request-ID $request_id; \
location / {
proxy_pass http://backend;
proxy_set_header X-Request-ID $request _id; \
access_ /var/ /nginx/access_trace.log trace;
}
}

wH P BETAH trace #95 F B EAE X 0 F £ B EFEA $request id
%% o BB » i proxy_set_header & 43 request 1z 12(request ID)%
BEHRELL > B35 RKICEF] location / AT A& » 1 K4 X B upstream
B3k o M F—A request AR IRFLAEICZBI R AIRE R AEE 5 sbot o il

add_header 4§ 4% reqeust Az 1R1% B 2| vh 4 Bk » BB P #AEH o

Discussion

Made available in NGINX Plus R10 and NGINX version 1.11.0, the
$request_id provides a randomly generated string of 32 hexadeci-

mal characters that can be used to uniquely identify requests. By

passing this identifier to the client as well as to the application, you
can correlate your logs with the requests you make. From the front-
end client, you will receive this unique string as a response header
and can use it to search your logs for the entries that correspond.
You will need to instruct your application to capture and log this
header in its application logs to create a true end-to-end relationship
between the logs. With this advancement, NGINX makes it possible

to trace requests through your application stack.

=t

%71 iE4£ NGINX Plus R10 ik AF2 NGINX 7R h& 49 1.11.0 lR AT i »

$request_id #24E T —ANMAMARE 32 M TSBFFHOFHE o Tk

FRTUAR ko —HAriRiE K - BE B RAFRAERLE P AR RS S

T B EGHEREEAR - B P 3 4NEE—08 request 1717 » IR %33

WAL R ZAR R BT A EF L o R ARS B AN » FRRIEANHE &L
AR B Z A8 KB o AT R AN > NGINX #9%5 M B INE P o515 RE & A

MR % B4k b of 0 0k R BRI PT A B E43 B R 69 KBk o

30.0 Introduction

Tuning NGINX will make an artist of you. Performance tuning of

any type of server or application is always dependent on a number
of variable items, such as, but not limited to, the environment, use
case, requirements, and physical components involved. It's common
to practice bottleneck-driven tuning, meaning to test until you’ve hit
a bottleneck, determine the bottleneck, tune for limitation, and
repeat until you’ve reached your desired performance requirements.
In this chapter we’ll suggest taking measurements when perfor-
mance tuning by testing with automated tools and measuring
results. This chapter will also cover connection tuning for keeping
connections open to clients as well as upstream servers, and serving

more connections by tuning the operating system.

30.0 /~%8

#f NGINX R % & #AT AR 2L R R AL NGINX R B EAK o IR F 5 K
2 R #ATHRERLEZH AR ZRM % » 4 RRT ¢ BRIRK ~ AB ~ B R

Fotp % & F o A A L WK A AT PR AR A M KRR o F 0 MK A B &Y

ANG TR %MK B BB MR ~ A PEARIRA ~ AL - AR MK EE KB

MBI o AFE > KN F2T AHMNATERNMNRERAITHRICLE 5 T

F3) M EFRAL > URFEP GRS R ER > PRI ARER S SRMEE

%0 RS o

30.0 Introduction

Tuning NGINX will make an artist of you. Performance tuning of

any type of server or application is always dependent on a number
of variable items, such as, but not limited to, the environment, use
case, requirements, and physical components involved. It's common
to practice bottleneck-driven tuning, meaning to test until you’ve hit
a bottleneck, determine the bottleneck, tune for limitation, and
repeat until you’ve reached your desired performance requirements.
In this chapter we’ll suggest taking measurements when perfor-
mance tuning by testing with automated tools and measuring
results. This chapter will also cover connection tuning for keeping
connections open to clients as well as upstream servers, and serving

more connections by tuning the operating system.

30.0 /~%8

#f NGINX R % & #AT AR 2L R R AL NGINX R B EAK o IR F 5 K
2 R #ATHRERLEZH AR ZRM % » 4 RRT ¢ BRIRK ~ AB ~ B R

Fotp % & F o A A L WK A AT PR AR A M KRR o F 0 MK A B &Y

ANG TR %MK B BB MR ~ A PEARIRA ~ AL - AR MK EE KB

MBI o AFE > KN F2T AHMNATERNMNRERAITHRICLE 5 T

F3) M EFRAL > URFEP GRS R ER > PRI ARER S SRMEE

%0 RS o

30.1 Automating Tests with Load Drivers | 1% J
ok T B 5 A ik aX

Problem

You need to automate your tests with a load driver to gain consis-

tency and repeatability in your testing.

7] %

A% A B2k X T B 52 3 A B4k R

Solution

Use an HTTP load testing tool such as Apache JMeter, Locust,
Gatling, or whatever your team has standardized on. Create a con-
figuration for your load-testing tool that runs a comprehensive test
on your web application. Run your test against your service. Review
the metrics collected from the run to establish a baseline. Slowly
ramp up the emulated user concurrency to mimic typical produc-
tion usage and identify points of improvement. Tune NGINX and

repeat this process until you achieve your desired results.

R R

1 R HTTP # &KX T B : 4= Apache JMeter/ Locust/ Gatling/ 2 Bl A
BAFEG i TR o MR EH M KEE > RS ERITLDMK > AT
MAX R FOHARIEAR s LB > BB AP EE WP R Z » ABME

I E LH R s RBHEARRAEA o3k R B > BAEXF N A TR MEE o

Discussion

Using an automated testing tool to define your test gives you a con-
sistent test to build metrics off of when tuning NGINX. You must be
able to repeat your test and measure performance gains or losses to
conduct science. Running a test before making any tweaks to the
NGINX configuration to establish a baseline gives you a basis to
work from so that you can measure if your configuration change has
improved performance or not. Measuring for each change made will
help you identify where your performance enhancements come

from.
2
12 B #hA 89 X T Bk 2 UM A MR, 0 T AL M8 38 i — AN — BAg MK R

o 2 NGINX #AT AL A I o PEREM XL AT & B 89 o 18 2 aE
%

A5 RIATAE A o 47 NGINX BB #ATRRALHT o %+ 4 B 2470 R

A

A

FEARME XM FRATZ R BRI AT EI T AL o 2t &/

Ao & R ALHAT R & o 4 B fE A ML REAT AR AT B9 AR IR ©

30.2 Keeping Connections Open to Clients

Problem

You need to increase the number of requests allowed to be made
over a single connection from clients and the amount of time idle

connections are allowed to persist.

] &%

3 Jpo A5 3095 R4k 0 Fl B 38 e 2 R % #:(idle connections) &9 69 & 4 8¢ & o

Solution

Use the keepalive_requests and keepalive_timeout directives to
alter the number of requests that can be made over a single connec-

tion and the time idle connections can stay open:

http {
keepalive_requests 320;
keepalive_timeout 300s;

The keepalive _requests directive defaults to 100, and the

keepalive_timeout directive defaults to 75 seconds.

S
keepalive_requests #» keepalive_timeout 4§ 4 A % & £ MNEZG KK
H R A E R EF G E N K

http {
keepalive_requests 320;
keepalive_timeout 300s;

keepalive_requests ik 4 100 > keepalive_timeout 89 K INE A 75 4 o

Discussion

Typically the default number of requests over a single connection
will fulfill client needs because browsers these days are allowed to
open multiple connections to a single server per fully qualified
domain name. The number of parallel open connections to a
domain is still limited typically to a number less than 10, so in this
regard, many requests over a single connection will happen. A trick
commonly employed by content delivery networks is to create mul-
tiple domain names pointed to the content server and alternate
which domain name is used within the code to enable the browser
to open more connections. You might find these connection opti-
mizations helpful if your frontend application continually polls your
backend application for updates, as an open connection that allows a
larger number of requests and stays open longer will limit the num-

ber of connections that need to be made.

4

—#& LT » keepalive_requests #= keepalive_timeout &9 BKikB & » 4845 i &
BEPwmtgiE R BA » ARA K BRATFREITH S ANEHE o 2 TR — Mg
fRAE R BT &AL 10 AR #915 R > X4 B RIEAALA - CDN #9 SEILRE A B M % 3
LIEATIREE AR 7 X8 AR R 693G > R S BREBATHA L % 89
B o RERNEME G FEREER A EEN KERE » AP mEERFEHEK

122

30.3 Keeping Connections Open Upstream

Problem

You need to keep connections open to upstream servers for reuse to

enhance your performance.

7] %

FEEWRER S EGMNRERS B EHER > RIS E AR o

Solution

Use the keepalive directive in the upstream context to keep con-

nections open to upstream servers for reuse:

proxy_http_version 1.1;
proxy_set_header Connection "";
upstream backend {

server 10.0.0.42;

server 10.0.2.56;

keepalive 32;

The keepalive directive in the upstream context activates a cache of
connections that stay open for each NGINX worker. The directive
denotes the maximum number of idle connections to keep open per
worker. The proxy modules directives used above the upstream
block are necessary for the keepalive directive to function properly
for upstream server connections. The proxy_http_version direc-

tive instructs the proxy module to use HTTP version 1.1, which
allows for multiple requests to be made over a single connection
while it's open. The proxy_set _header directive instructs the proxy

module to strip the default header of close, allowing the connection

to stay open.
fRRTT R
4 upstream 41484 1& A keepalive 18 & RFRELR - 5HKER 5 5 &

FARNM

proxy_http_version 1.1;
proxy_set_header Connection "";
upstream backend {

server 10.0.0.42;

server 10.0.2.56;

keepalive 32;

keepalive 15444 &/~ NGINX worker # 20| E—MNEFELEH » RFHEAD

worker # R RFIT A TR EHEG R KEHELKZ - R E1E keepalive
% LAk 0 £ upstream 154 LA4% A 89 proxy B3k 454 ML LA 4 o

proxy_http_version 354 & 7B A & http 1.1 JR A » CAFE EANEHE

T %% % AF R proxy_set_header & 4-# & connection 7# & 3k 89 BRI A

close » IMRAFRFEZNITARE

Discussion

You would want to keep connections open to upstream servers to
save the amount of time it takes to initiate the connection, and the
worker process can instead move directly to making a request over
an idle connection. It's important to note that the number of open
connections can exceed the number of connections specified in the
keepalive directive as open connections and idle connections are
not the same. The number of keepalive connections should be kept
small enough to allow for other incoming connections to your

upstream server. This small NGINX tuning trick can save some

cycles and enhance your performance.
é'a 'L/E}

Y EERERERSESRRER S EOERITARE AT E R HEH
BT & a9 at 18] 5 Flat o 235 worker #AZME| 89F Ry KA E Rk EE
W o H—EFREZL TR OEZELTULS T keepalive B B 69 33k »
R A8 0y & A HEREZ T AR —NKE - keepalive B & 6% E 5
B RE Y ARG H RAEBE Y KB HARIELIRE B o L5 EHLTMRY

BRI EREHG ARG F B RIVRF S M6k o

30.4 Buffering Responses

Problem

You need to buffer responses between upstream servers and clients

in memory to avoid writing responses to temporary files.

BIREEREP ML BENAFERZTREMREIAMFL

Solution

Tune proxy buffer settings to allow NGINX the memory to buffer

response bodies:

server {
proxy_buffering on;
proxy_buffer_size 8k;
proxy_buffers 8 32k;
proxy_busy buffer_size 64k;

The proxy_buffering directive is either on or off; by default it's on.
The proxy_buffer_size denotes the size of a buffer used for read-
ing the first part of the response from the proxied server and
defaults to either 4k or 8k, depending on the platform. The
proxy_buffers directive takes two parameters: the number of buf-
fers and the size of the buffers. By default the proxy_buffers direc-
tive is set to a number of 8 buffers of size either 4k or 8k, depending
on the platform. The proxy_busy_buffer_size directive limits the
size of buffers that can be busy, sending a response to the client

while the response is not fully read. The busy buffer size defaults to

double the size of a proxy buffer or the buffer size.
S
BRI % A KLE > AH NGINX IR E B eam il EREARBEE TR

server {
proxy_buffering on;
proxy_buffer_size 8k;
proxy_buffers 8 32k;
proxy_busy buffer_size 64k;

proxy_buffering 44 T ¥A4% on 2, off » ik £ on ° proxy_buffer_size &4~
ATRATHBEERARERS EoA g% F KD REFERF EHKIAEA

4k 3 8k ° proxy_buffers 14 &AL » AHGEBRAMARFENERR
ZERD BRALBAMEAR » RFFEXFAENEARKINEES 4k & 8k ©
proxy_busy_buffer_size 184 T fic & K 7 A 1 Blok 5 B B 300 52 & P 5% 69 4% 0

R Ko g8 A —fx A proxy_buffers 9 #4& 4 sk 4E o

Discussion

Proxy buffers can greatly enhance your proxy performance, depend-
ing on the typical size of your response bodies. Tuning these settings
can have adverse effects and should be done by observing the aver-
age body size returned, and thoroughly and repeatedly testing.
Extremely large buffers set when they’re not necessary can eat up the
memory of your NGINX box. You can set these settings for specific
locations that are known to return large response bodies for optimal

performance.

43

‘a

REZLGRIFZFRARIIRES M X ETrALAEG R D o FARLEFREZE
S AF m R R 6T R s AT RENRXAER 0 T T AR & @)%
ol ELER R DEEHEFTARLFT G EA RKEH NGINX A A o

— AT RAGEN R KARE A G R KA &AR R ARIIEAE o

[nginx %k #F R 4k 4L](http://www.cnblogs.com/me115/p/5698787.html\

http://www.cnblogs.com/me115/p/5698787.html%29\

30.5 Buffering Access Logs

Problem

You need to buffer logs to reduce the opportunity of blocks to the

NGINX worker process when the system is under load.

] %

AL T AHKSN » BA B EE P R AKAIL NGINX worker # F2 [& o

Solution
Set the buffer size and flush time of your access logs:

http {
access_ /var/ /nginx/access.log main buffer=32k flush=1m;

}
The buffer parameter of the access_log directive denotes the size
of a memory buffer that can be filled with log data before being
written to disk. The flush parameter of the access_log directive
sets the longest amount of time a log can remain in a buffer before

being written to disk.
gk Tr &
1% & access_log # buffer #= flush %%k :

http {
access_ /var/ /nginx/access.log main buffer=32k flush=1m;

}

buffer 54 A T2 & » BAXHFMHEFR AH KD 5 flush 54805 E %+

RARBEEZFTREANGEFHRAGGRKEE o

Discussion

Buffering log data into memory may be a small step toward optimi-
zation. However, for heavily requested sites and applications, this
can make a meaningful adjustment to the usage of the disk and
CPU. When using the buffer parameter to the access_log direc-
tive, logs will be written out to disk if the next log entry does not fit
into the buffer. If using the flush parameter in conjunction with the
buffer parameter, logs will be written to disk when the data in the
buffer is older than the time specified. When buffering logs in this
way, when tailing the log, you may see delays up to the amount of

time specified by the flush parameter.

R

KB ERIEEFINGEFTRARDG—MUACF B - 122 > 3 THRKEHRY
b BAe e R AL 6 sk 2% B A= CPU 42 MM AR A & K& 5L - buffer 4 289 2 fig &

SHNRCEFHT > BERME ALK T ; flush 2R HaR > TEEFFH

AERIRREANE > LRMBEAB AT » RELA TR M PP 5 A2

AXHM B A EHIER o

3.30.6 #1F A LA

131

	前言
	一、 负载均衡和 HTTP 缓存
	1.1 高性能的负载均衡
	1.1.0 介绍
	1.1.1 HTTP 负载均衡
	1.1.2 TCP 负载均衡配置
	1.1.3 负载均衡算法
	1.1.4 限制连接

	1.2 智能的会话持久化
	1.2.0 介绍
	1.2.1 绑定 Cookie 到服务器

	1.3 服务器健康监控
	1.3.0 介绍
	1.3.1 健康监控内容
	1.3.3 TCP 服务器监控检测
	1.3.4 HTTP 服务器监控检测

	1.5 大规模可伸缩缓存配置
	1.5.0 介绍
	1.5.1 缓存区域配置(Caching Zones)
	1.5.2 配置缓存哈希键名
	1.5.3 跳过被缓存内容
	1.5.4 缓存性能

	1.9 UDP 负载均衡
	1.9.0 介绍
	1.9.1 Stream 指令上下文
	1.9.2 负载均衡算法
	1.9.3 UDP 服务器健康检测

	二、 服务器安全与可访问性
	2.11 可访问性控制
	2.11.0 介绍
	2.11.1 基于 IP 地址访问配置
	2.11.2 跨域资源共享控制

	2.12 访问限制
	2.12.0 介绍
	2.12.1 限制连接数
	2.12.2 限制上传下载速度
	2.12.3 限制带宽

	2.13 数据加密
	2.13.0 介绍
	2.13.1 客户端加密
	2.13.2 Upstream 模块加密

	2.20 实战加密技巧
	2.20.1 HTTPS 重定向
	2.20.3 启用 HTTP 严格传输加密功能

	三、 部署和运维
	3.29 访问日志、错误日志和请求调用栈的调试和问题跟踪
	3.29.1 介绍
	3.29.1 配置访问日志
	3.29.2 配置错误日志
	3.29.3 将日志记录到 syslog
	3.29.4 请求调用栈

	3.30 性能调优
	3.30.0 介绍
	3.30.1 使用负载测试工具实现自动化测试
	3.30.2 启用客户端长连接
	3.30.3 启用 upstream 模块长连接
	3.30.4 启用响应缓冲区
	3.30.5 启用访问日志缓冲区
	3.30.6 操作系统调优

